Development of Neutron Monitor for Fusion Systems
Main Article Content
Abstract
Currently, the detection of neutrons employs sensors with a high thermal neutron response embedded in a thermalizing medium. However, this approach does not provide much information on neutron energy and, therefore, is inherently unable to identify sources commonly used in the industry. The current study proposes the application of a multi-element scintillator crystal to detect fast neutrons above 1 MeV in general and develop a neutron monitor for (D, D) fusion reaction in particular. The approach uses the (n, p) reaction on a bi-atomic scintillator in the neutron energy range above 1 MeV. Thus, a series of Monte Carlo simulations have been performed using MCNP/X along with a series of experiments carried out using a neutron generator based on the (D, D) reaction at 108 n/s. Both sets of data were compared, with the pulse height spectra suggesting a prominent peak from the emitted protons can serve to monitor the neutron emission from the generator.