Dryout Power of a Canflex Bundle String With Raised Bearing Pads

Main Article Content

L.K.H. Leung
J.S. Jun
G.R. Dimmick
D.E. Bullock
W.W.R. Inch
Ho Chun Suk

Abstract

Dryout power data have been obtained with CANFLEX bundle strings equipped with raised bearing pads (1.7 mm and 1.8 mm height as compared to 1.4 mm in the current Mk-IV design) at Stem Laboratories. The experiment covered a wide range of steam water flow conditions in three flow tubes simulating uncrept, and 3.3% and 5.1 % crept profiles. The dryout power follows consistent parametric trends: it increases with increasing mass-flow rate, and decreases with increasing pressure, inlet-fluid temperature and channel creep. Local and boiling-length-average (BLA) critical-heat-flux (CHF) values were evaluated from the dryout-power measurements. The dryout power and BLA CHF values of the high bearing-pad bundles are higher than those of the low bearing-pad bundles at the same channel inlet flow conditions. On average, the dryout powers for bundles with 1. 7 mm and 1.8 mm bearing pads are about 8% and 10%, respectively, higher than those for the bundle with 1.4 mm bearing pads. Compared to the 37-element bundle, an enhancement in dryout power is shown with CANFLEX bundles for all bearing-pad heights, at flow conditions of interest for reactor licensing. The average dryout power enhancement varies from 4% for the CANFLEX bundle with 1.4 mm bearing pads in the uncrept channel to 27% for the CANFLEX bundle with 1.8 mm bearing pads in the 5.1% crept channel.

Article Details

Section
Articles