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Abstract 

A large number of numerical schemes have been developed for the integration of the hyperbolic 
system of partial differential equations (PDEs) arising in the magnetohydrodynamic (MHD) 
simulation of plasmas. These schemes can be based on either the combined space and time 
discretization such as the Lax-Wendroff type schemes, or one may perform first a separate space 
discretization leading to a semidiscretized set of ordinary differential equations (ODEs), which are 
then separately integrated in time. In this work, a comparative study of two schemes based on 
simultaneous discretization of space and time (Richtmyer two-step Lax-Wendroff scheme and 
MacCormack scheme) and one scheme based on centered-space semidiscretization followed by time 
integration by the fourth-order Runge-Kutta method, is presented. Particular attention is paid to the 
applicability of the linear stability criteria to the numerical integration of nonlinear MHD equations 
with geometry and field components of a linear 9-pinch. 

1. Introduction 

High-temperature magnetized fusion plasmas such as exist in tokomaks or other modern 
magnetic fusion devices can be described using kinetic or fluid models. However, the wide 
range of time and space scales present in the kinetic description of plasmas make numerical 
simulation based on kinetic equation extremely difficult. As a result, fluid models, particularly 
the magnetohyrodynamic (MHD) or the extended MHD models, are extensively used in the 
numerical simulation of tokomak and other magnetized plasmas. These models adequately 
describe a large number of phenomena of interest in magnetic fusion. 

The MHD model of the magnetic fusion plasma results in a system of nonlinear hyperbolic 
equations. Numerical solution of even these reduced systems of equations poses a challenge 
because there are multiple conserved quantities and multiple characteristic speeds. Even a 
single linear advection equation with a constant characteristic velocity is not amenable to 
straightforward numerical integration and requires a careful consideration of stability 
condition and errors resulting from numerical diffusion and dispersion. For example, the most 
straightforward finite difference method, the forward—time centered-space (FTCS) method, 
which is conditionally stable when applied to the diffusion equation turns out to be 
unconditionally unstable for the advection equation [1,2]. In this work we present a 
comparative study of some of the spatial-temporal discretization schemes which are in use for 
the numerical integration of the hyperbolic system of partial differential equations arising in 
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the MHD models of magnetized fusion plasmas. These are briefly described in the remainder 
of introduction. 

A modification of the FTCS method proposed by Lax and known as Lax-Friedrichs scheme is 
conditionally stable but suffers from excessive numerical damping. It is of first order accuracy 
in time and its truncation error becomes unbounded as time step tends to zero for a fixed 
spatial grid. For this reason, it is not regarded as a consistent approximation to the advection 
problem [2,3] and has not been used in this work. Instead, a two-step Lax-Wendroff type 
method developed by Richtmyer, and a predictor-corrector Lax-Wendroff type method 
developed by MacCormack [3,4], is used. Both these methods use simultaneous discretization 
of space and time and can be readily applied to systems of nonlinear hyperbolic equations, 
although, as is shown later, the linear stability criterion based on Courant-Friedrichs-Levy 
(CFL) condition, turns out to be only a necessary and not a sufficient condition for the 
stability of numerical simulations of the nonlinear problem. In addition to the two numerical 
schemes mentioned above, one scheme based on the method of lines, also known as 
semidiscretisation [4,5] is also considered in this work. The resulting system of ODEs is then 
solved by the fourth-order Runge-Kutta method [3,6]. 

In what follows, the mathematical formulation of the problem to which these methods are 
applied and compared, is presented. Applicability of the linear stability criteria is examined by 
direct numerical simulation of the nonlinear problem. Numerical diffusion and dispersion 
errors are assessed from the numerical amplification factor based on the local Courant number 
(CFL condition). 

2. Governing Equations 

For a comparative study of three spatiotemporal discretization schemes discussed above, a 
one-dimensional cylindrical geometry with magnetic field and plasma current components as 
shown in Figure 1 is chosen. Time dependent one dimensional ideal MBD equations for this 
configuration can be written as [7-9]. 

r 

Figure 1 Schematic diagram of 
the linear 9-pinch configuration 
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Nondimensionalization 

The following transformations are used to write the above equations in a dimensionless form: 

r—> ra, 
to 

t -4 —, 
VA 

P —' PPo, v —> vvA, P —> PPO, B —> BBa; 

where vA = -4861 goo) is the Alfven speed and other symbols are given in the 
Nomenclature. Using these transformations, Eqs. (1) can be written in the following 
dimensionless form: 

Op_ 10 

at  rOr
(rpv)

' 

Ov _ Ov fi' 1 0 B2— ( 
v— ---- P + 

Ot — Or 2 p Or [3 
,

OP _ OP P 0
— — y--vv 

at —v— Or r Or )' 

OB  B 0 , OB 
---vv)— v—' at — r Or Or 

(2) 

where /3 = P0/(BR2µ0) . The above equations can be written in the following matrix form 

OU OU 
+ A(U) Tr = S(U, r), (3) 

where, 
Pv 17 p 0 0 —pvlr 

U = { P} ' 0 v )6/ 2p B/P A(U) =
0 yP v 0 ' 

S(U,r) = {_yv0p/r}. (4) 

B 0 B 0 v —vBIr 

3. Initial and Boundary Conditions 

The system of Eqs. (2) or (3) can be solved numerically starting from any initial condition of 
the plasma and applying appropriate boundary conditions. For the simulations carried out in 
the present work, we start with a stationary (quiescent) equilibrium state of the plasma and 
introduce an initial disturbance (not necessarily small). The temporal evolution of the plasma 
is then studied both in its transient phase and the final steady state using various schemes 
within their (linear) stability regimes. The system of Eqs. (2) or (3) has a wide variety of 
confined equilibria in which the pressure is peaked at the center and monotonically decreases 
to zero at the edge [8]. The azimuthal current, and therefore pressure gradient, must be zero at 
r = 0 and also at r = 1 if P = 0 at r = 1. Here, the simplest algebraic profile for the 
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dimensionless P in terms of the dimensionless radius which satisfies these conditions is 
chosen: 

P(r,O) =1— 3r2 + 2r3; 0 < r < 1, (5) 

and corresponding initial profile for the dimensionless magnetic field is given by 

B(r,O) = 111— 13(1— 3r2 + 2r3); 0<r<1. (6) 

The initial density profile can be chosen independently, each choice corresponding to a 
different temperature profile. Since our purpose in the present work is only to study the 
applicability and stability of the various numerical algorithms, an initial density profile same 
as initial pressure profile is used implying an isothermal plasma. For the numerical results 
presented here, a sinusoidal disturbance is introduced in the equilibrium pressure distribution 
changing the initial pressure distribution to 

P(r, 0) = (1 — 3r2 + 2r3)[1 + S sin(2701; 0 r 1. (7) 

This disturbed initial pressure profile respects all the boundary conditions at r = 0 and r = 1. 
The boundary conditions for all the state variables are given below: 

At r = 0, Op 
Or ' 

aP - 0 v = 0, 
Or 

— 
0, 

at 

— ' 

at r = 1, p = 0, v = 0, P = 0, 

OB _ 0.

Or — ' 

B =1. 
(8) 

It may be stated here that any other set of initial and boundary conditions can be chosen 
which may be relevant for a given plasma. The numerical results presented later are with the 
initial and boundary conditions as stated above. The parameter S in the disturbed pressure 
profile, Eq. (7), is taken as equal to 0.1 for all simulations. 

4. The Linear Stability Conditions 

It can be easily seen that the eigenvalues, A, of the matrix A in Eq. (3) are real for all 
physically acceptable values of U, confirming that this system of equations is pure hyperbolic. 
It is easily ascertained that 

j 2 

AE IAAImax = 
p 

+13y  
V + IV'. 

(9) 

The stability considerations of the numerical schemes are based on the von Neumann analysis 
of a scalar linear advection equation with advection speed equal to the characteristic speed A 
[2,3]: 

-4 

34th Annual Conference of the Canadian Nuclear Society 

37th Annual CNS/CNA Student Conference 

 

2013 June 9 – June 12 

Toronto Marriott Downtown Eaton Centre Hotel 

 

 
 

- 4 - 

 

dimensionless   in terms of the dimensionless radius which satisfies these conditions is 

chosen: 

 (   )                                                    ( ) 
 

and corresponding initial profile for the dimensionless magnetic field is given by 

 

 (   )  √   (         )                                ( ) 
 

The initial density profile can be chosen independently, each choice corresponding to a 

different temperature profile. Since our purpose in the present work is only to study the 

applicability and stability of the various numerical algorithms, an initial density profile same 

as initial pressure profile is used implying an isothermal plasma. For the numerical results 

presented here, a sinusoidal disturbance is introduced in the equilibrium pressure distribution 

changing the initial pressure distribution to 

 

 (   )  (         )[      (   )]                           ( ) 
 

This disturbed initial pressure profile respects all the boundary conditions at            . 

The boundary conditions for all the state variables are given below: 

 

                     
  

  
       

  

  
   

  

  
     

 
                                                                                   

 

 

    (8) 

 

It may be stated here that any other set of initial and boundary conditions can be chosen 

which may be relevant for a given plasma. The numerical results presented later are with the 

initial and boundary conditions as stated above. The parameter   in the disturbed pressure 

profile, Eq. (7), is taken as equal to 0.1 for all simulations. 

4. The Linear Stability Conditions 

It can be easily seen that the eigenvalues,  , of the matrix   in Eq. (3) are real for all 

physically acceptable values of  , confirming that this system of equations is pure hyperbolic. 

It is easily ascertained that 

  |  |    √
  

 
 
   

  
 | |                                              ( ) 

 

The stability considerations of the numerical schemes are based on the von Neumann analysis 

of a scalar linear advection equation with advection speed equal to the characteristic speed   

[2,3]: 



34th Annual Conference of the Canadian Nuclear Society 2013 June 9 — June 12 
37th Annual CNS/CNA Student Conference Toronto Marriott Downtown Eaton Centre Hotel 

Ou Ou 
—  
Ot Or 

+ A— = 0. (10) 

For a time step from t(n) to t (n+1), the numerical amplification factor, G, which is complex 
in general, is given by: 

un+1 
G = . 

un 

The modulus of G provides a measure of numerical dissipation or damping and must be less 
than unity for the stability of the numerical algorithm. The phase of G provides a measure of 
numerical dispersion [1,5]. 

4.1 Stability condition for Lax-Wendroff-Richtmyer and MacCormack schemes 

The linear stability criteria for these two schemes are identical. The amplification factor G and 
its modulus are given by [1-3]: 

G= (1 — C2 + C2 cos 0) + j(—C sin 0); j =

IGI = f1 — 4C2(1 — C2) sin4(4)/2). (12) 

It can be seen easily that for all values of 4) (dimensional mesh wave number), I G I 1 if the 
Courant number, 

A At 
C = < 1 

Or — ' 
(13) 

where At is the time step and Or grid spacing. It should be mentioned that for nonlinear 
problems or nonconstant matrices A, A will be different at different grid points and the 
stability condition must be satisfied for all grid points. 

4.2 Stability condition for for the semidiscretization scheme 

One of the methods used for numerical simulation in this work is based on centered-space 
differencing which converts the original system of PDEs, Eqs. (2) or (3), to a system of ODEs in 
time which are then solved by the fourth-order Runge-Kutta method. The numerical 
amplification factor, G, for this method is given by [3]: 

1 1 1 
G = 1 — (aLt) + 2 (aLt)2 — —6 (aAt)3 + 

24 
(a0t)4, 

for a scalar linear ODE 
du 
—
dt 

+ au = 0. 
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If in the advection equation, Eq. (10), centered-space differencing is used, it is straightforward 
to see that the amplification factor for the advection equation is obtained by the following 
replacement for ctAt in Eq. (14): 

A At A At 
czAt = 

2Ar 
(elf

e = ism° 
= Cjsin . 

This yields: 

G = — zCZ sin2 + sin' cp) + j (—C sin 41 + C3 sin3 11), 

IG I = — AC6(1 — sing 41) sin6

It is easy to see that IGI 5 1 if 

A At 
C= Ar 

521h, 

(16) 

(17) 

which coincides with the stability criterion obtained in [5] by the matrix method of stability 
analysis for the fourth order Runge-Kutta method applied to semidiscretized schemes. 

5. Numerical Results and Discussion 

Results of numerical simulations of Eqs. (2), subject to initial and 'boundary conditions given 
in Eqs. (6-8), using the three schemes are given in Figures (2-10). In these figures, the Lax-
Wendroff-Richtmytr two-step scheme is designated as LWR, the MacCormack scheme is 
designated as MAC, and the scheme based on centered-space semidiscretization followed by 
time integration by the fourth-order Runge-Kutta method is designated as RK4. It may be 
mentioned here that the MacCormack scheme can be implemented in three versions [1,4], 
which give nearly identical results (for the problem studied here). We have implemented the 
symmetric version which alternates the forward and backward differencing in the predictor 
and corrector between successive time steps. In all the numerical simulations, the linear 
stability criteria are satisfied, with Courant number, C 5 0.8 at the center of all grid points. 
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Figure 2 Comparison of numerical solution of Eqs. (2) by different schemes(a) dimensionless 
pressure and (b) dimensionless magnetic field at r = 0.25 and grid points = 61. 
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Figures (2-4) show results of simulations upto dimensionless time t = 4, i.e., upto four-times 
the time it takes Alfv4n waves to cross the plasma (minor) radius. The significant differences 
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Figures (2—4) show results of simulations upto dimensionless time    , i.e., upto four-times 

the time it takes Alfvén waves to cross the plasma (minor) radius. The significant differences 
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in the results obtained by the three schemes are apparent in Figure 2a and 2b. The effect of the 
Courant number is shown in Figures (3a-3c), and is found to be particularly pronounced for 
the LWR scheme (Figure 3a). The effect of grid refinement, while keeping the Courant 
number same, on the three schemes is shown in Figures (4a-4c). It can be seen in Figure 4a 
that the linear stability condition is not always sufficient for ensuring the numerical stability 
when simulating a nonlinear problem. This is particularly true for the LWR scheme, Figure 
4a, but also true for RK4, Figure 4c, where the instability builds slowly for all cases, even 
when the linear stability condition is satisfied. On the other hand, the MacCormack scheme 
gives numerically stable results if the linear stability condition is satisfied. This is true for the 
nonlinear problem solved in this work and may not be true when applied to other nonlinear 
problems. 
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Figure 5 Time evolution of dimensionless in Eqs. (2) upto t = 50 for Lax-Wendroff-

Richtmyer and MacCormack schemes at the radial distances r = 0.25 and r = 0.75. 

Figure 5 gives time evolution using MAC and LWR schemes. The quasi-steady state solutions 
obtained at t = 50 by the two schemes compare well as shown in Figure 6. As mentioned 
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above, LWR scheme does not always give stable results, even when the linear stability 
criterion is satisfied. However, in those cases where it remains stable, the results match well 
with the MAC scheme, except during the initial transient phase. Long time results using RK4 
are not shown as the scheme invariably builds upto an instability, even when linear stability 
criterion is satisfied. As mentioned later, this may be due to the negligible numerical 
dissipation or insufficiency of the linear stability criterion for the nonlinear problem. 
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Figure 6 Radial distribution of (a) pressure, (b) magnetic field for two schemes Lax-
Wendroff-Richtmyer and MacCormack at t = 0 and t = 50. 
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Figure 7 shows the variation of the Courant number across the (dimensionless) radius of the 
plasma. It can be seen that if the condition C < 1 is satisfied at the center of outermost grid 
interval, it is satisfied at all other points of the grid. Figure 8 shows that if the conditions in 
Eq. (13) and (17) are satisfied, the respective plots of the numerical amplification factor lie 
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Figure 7 shows the variation of the Courant number across the (dimensionless) radius of the 
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within the unit circle on the complex plane, implying I GI 1. This can also be seen in 
Figures 9a and 10a, where I GI is plotted as a function of dimensional mesh wave number 0 in 
the range —7r to 7r. 

Finally, Figures 9b and 10b show the dispersion or phase error. A positive dispersion error 
implies that numerical advection velocity is larger than the exact physical velocity. The 
differences observed in the numerical results obtained using the three schemes are due to 
different numerical dissipation and dispersion introduced by each scheme. In particular, there 
is very little numerical dissipation in RK4, Figure 10a, where it can be observed that I GI 
0.99. The slowly building instability (for the nonlinear problem) observed in RK4 may be 
due to negligible numerical dissipation. 
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Figure 9 (a) Numerical amplification and (b) phase error for the Lax-Wendroff-Richtmyer 
scheme for various Courant numbers 
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Figure 10 (a) Numerical dissipation factor and (b) phase error for the Runge-Kutta fourth 
order scheme for various Courant numbers. 
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6 Conclusion 

Three widely used discretization schemes for the numerical solution of a hyperbolic system of 
equations are applied to a representative nonlinear problem arising in the 
magnetohydrodynamic simulation of plasmas. These include two schemes based on 
simultaneous discretization of space and time (the Ritchmyer two-step Lax-Wendroff scheme 
and the MacCormack predictor-corrector scheme with alternating forward and backward 
differencing between successive time steps). The third scheme used in this work consists of 
centered-space differencing to convert the original system of PDEs to a larger system of 
ODEs which are then integrated in time by the fourth order Runge-Kutta method. The linear 
stability criteria for these schemes are presented. Numerical simulations show that the linear 
stability conditions are necessary but not sufficient to guarantee the numerical stability of 
these algorithms when applied to a nonlinear hyperbolic problem. For the problem studied 
here, the MacCormack scheme always gave stable results. The stability of the Lax-Wendroff-
Richtmyer scheme was found not to be characterized by the Courant number alone. However, 
in those cases where it remains stable, the long time quasi-steady state results match well with 
those obtained with the MacCormack scheme. The centered-space semidiscritization scheme 
followed by time integration by the fourth-order Runge-Kutta method developed a slowly 
building instability in all cases. This may be due to negligible amount of numerical damping 
in this scheme. The solution for the transient phase obtained from the three schemes are found 
to differ significantly due to different amount of numerical diffusion and dispersion present in 
each scheme. 

Nomenclature 

a 
A 
B 
Ba
C 
G 
P 

Po 
r 
t 
u, U 
v 

plasma minor radius 
coefficient matrix 
magnetic field 
magnetic field at the boundary 
Courant number 
numerical amplification factor 
pressure 
pressure at the center 
radial coordinate 
time 
dependent variable(s) 
radial velocity 

7. References 

vA 
a 
13 

Y 
S 
8 
A 
A 

lio 
P 
Po 
0 

Alfven speed 
a constant in Eq. (15) 
normalized plasma pressure (= 0.1) 
ratio of specific heats (= 5/3) 
a constant (= 0.1) 
azimuthal coordinate 
eigenvalue of matrix A 

IAAImax 
magnetic permeability 
density 
density at the center 
dimensionless mesh wave number 

[1] J.A. Trangenstein, "Numerical Solutions of Hyperbolic Partial Differential 
Equations", Cambridge University Press, Cambridge, 2007. 
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Nomenclature 

  plasma minor radius    Alfvén speed 

  coefficient matrix   a constant in Eq. (15) 

  magnetic field   normalized plasma pressure (    ) 
   magnetic field at the boundary   ratio of specific heats (    ) 
  Courant number   a constant (    ) 
  numerical amplification factor   azimuthal coordinate  

  pressure   eigenvalue of matrix   

   pressure at the center   |  |    

  radial coordinate    magnetic permeability 

  time   density  

    dependent variable(s)    density at the center 

  radial velocity   dimensionless mesh wave number 
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