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Abstract 

The analysis of VHTR fuel tends to be difficult when using deterministic methods currently 
employed in lattice codes notably because of limitations on geometry representation and the 
stochastic positioning of spherical elements. The method proposed here and implemented in the 
lattice code DRAGON is to generate the positions of multi-layered spheres using random sequential 
addition, and to analyze the resulting geometry using a full three-dimensional spherical collision 
probability method. The preliminary validation runs are consistent with results obtained using a 
Monte-Carlo method, for both regularly and randomly positioned pins. 

1. Introduction 

Fourth generation very high temperature reactors (VHTRs) present characteristics that tend to be 
harder than conventional geometries to analyse using methods available in traditional deterministic 
neutronics computer codes. Worthy of interest in the scope of this document are the random 
character of fuel elements in a uniform matrix, and the multi-layered, spherical geometry of these 
fuel elements. 

The goal of this project has been to integrate the capacity to analyse such properties in the transport 
lattice code DRAGON [1]. First, a geometrical analysis of spherical volumes has allowed us to 
develop analytical volumes calculation capacities. Then, integration line tracking for spherical 
geometries has been implemented. Routines enabling this exact geometrical analysis of multi-
layered, randomly disposed spherical particles have been successfully incorporated and tested in this 
code. A thorough analysis of combinations of spherical and Cartesian meshes has also been 
performed, to ensure the validity of the lengths and volumes calculated by the new routines. 

Finally, preliminary validation runs have been carried out, comparing results obtained using the new 
module on simple, three dimensional, spherical geometry elements, using both explicitly positioned 
pins and randomly distributed fuel elements. Results have been compared and are consistent with 
those established using the Monte-Carlo code SERPENT [2]. Increasing angular and spatial tracking 
refinement leads to better precision, however at the expense of a rapidly increasing computational 
burden. 

This paper will begin by presenting a quick theoretical review of the collision probability method, 
followed by the geometrical analysis required for the analytic volumes calculation and generation of 
the tracking lines. Then, the verification process will be presented, followed by the results of the 
preliminary validation performed on a simple random distribution of spherical fuel elements. 
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2. Theory 

The neutron transport can be solved using a number of methods. Pertinent to this analysis, we use 
the integral form of the Boltzmann transport equation, which generally requires a spatial 
discretization analysis known as tracking. Using the formalism presented by Hebert [3], the integral 
form of the multi-group, steady-state transport equation can be written, assuming isotropic sources 
and scattering, as: 

0g(F)= 47r f: e-l-g (s)Qg (F - sO)ds d2n (1) 

where Og is the neutron flux at position r in group g, zg is the optical path defined as: 

rg (s) = los E g (F - s'a)ds' (2) 

with E g the transport corrected total cross-section. The isotropic neutron source in group g, Qg, can 

be expressed as a sum of fission-produced and scattered neutrons: 

1 j
Q g ( F ) = E Es,0,v-h (FA 

k
 E x Eg=1 f,j,h ( FAO ( 3) 

h=1 j=1 

Here Ess,,g, h is the transport corrected scattering cross section, vEf ,i,h the neutron production from 

fission by isotope j, and z ig the fission spectrum. 

2.1 The collision probability method 

The collision probability method relies on a spatial discretization of this equation, requiring the 
subdivision of the unit cell in N sub-volumes, each with volume VZ, i = 1...N. Each of the 
sub-regions will be assumed to contain a source Qi,g that is uniform over its volume, as well as a 
uniform total macroscopic cross-section Eig . Using the averaged flux in region V1: 

0i,g 

1 c 
= V d3r g0 (0

we can reformulate equation (1), after multiplication by E i,g and integration over Vj, as: 

0i,g = E Qj,gPij,g 

j=1 

(4) 

(5) 

where, using s as an index representing the distance travelled on a track in direction SZ , we have 
defined the reduced collision probability pii,g, as: 

1  f f 
s,O)e-rg (s)dsd2S/d3r (6) 
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Here hgs ←Σ ,0,  is the transport corrected scattering cross section, hjf ,,Σν  the neutron production from 
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with 3 v (s, 6) a characteristic function worth 1 if points of track trajectory Q is in volume VZ, and 

0 otherwise. This reduced collision probability is defined in such a way that it remains finite as E ig

tends to zero, and so that Eigpiig is the probability for a neutron born in region i, in energy group 

g, to have its first collision in region j. 

2.2 Tracking 

An angular discretization is then performed, where planes no are defined orthogonal to 

direction SZ . Each plane is characterized by orthogonal lines (tracks), each with a starting point -13' 

on plane Ho , and propagating in direction SZ . This allows us to rewrite the volume integrals as 

integrals over the whole tracking as: 

Laa. F(F,a)d3rd2S-1= f f (s' ,a)F(s' ,a)ds' d2 p' d2n (7) 1-1,, 

We can therefore evaluate the volumes and reduced collision probabilities as: 
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In practice, since an analytic integration cannot be performed, the tracking of the geometry will be 

done by supposing a finite number of directions SZ m , each with an associated weight com , and a 

surface track density on every plane, each track also being weighted with weight Tn , and crossing 

regions identified by indices k or 1. We can then evaluate numerically equations (8) and (9) as: 
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3. Geometry Analysis 

The implementation in DRAGON of the capacity for the analysis of multi-layered spherical 
particles has two components. First, the tracking itself, which is the main component, although 
mathematically quite trivial, and second, the analytical volumes calculation, which serves as a 
tracking verification, by comparing analytical and numerical volumes, computed using equation (8). 
Both steps are performed by the module NXT: [4]. 
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In practice, since an analytic integration cannot be performed, the tracking of the geometry will be 
done by supposing a finite number of directions mΩ̂ , each with an associated weight mω , and a 
surface track density on every plane, each track also being weighted with weight nT , and crossing 
regions identified by indices k or l. We can then evaluate numerically equations (8) and (9) as: 
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3. Geometry Analysis 

The implementation in DRAGON of the capacity for the analysis of multi-layered spherical 
particles has two components. First, the tracking itself, which is the main component, although 
mathematically quite trivial, and second, the analytical volumes calculation, which serves as a 
tracking verification, by comparing analytical and numerical volumes, computed using equation (8). 
Both steps are performed by the module NXT: [4]. 

3.1 Spherical 3-D tracking 
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The NXT: module generates a number of tracking lines, based on user-specified track density and 
angular quadrature, each line being characterized by its starting point (x1, yi, zi), and its orientation, 
or direction cosines (ax, ay, as). Each sphere is also characterized by the coordinates of its centre 
(x,,ys, z,), and its radius, R. Hence, we have the following equations, respectively for the line and 
the sphere: 

x—  1 y —
 =t 

ax ay az
(12) 

(x x z )2 + (y — y z )2 + (z — z z )2 =R2 (13) 

These can easily be solved for the intersections coordinates (xi, yi, zi) = (tiax+ xi, tiay+ yi, ti az+ 
zi) and (x2, y2, z2) = (t2ax+ xi, t2ay+ yi, t2az+ zi), where ti and t2 are the roots of the quadratic 
equation (art + xi - x5)2 + (art +yl - ys)2 + (art + zi - z5)2 R2 

3.2 Volumes 

The volumes that need to be computed here are the volumes of spherical shells (which are trivial) 
and those corresponding to the intersection of a Cartesian and spherical region. The methodology 
employed for the latter relies on a linear combination of the volumes of the intersection located 
below, to the left and behind each corner of the parallelepiped formed by the intersection of the six 
planes delimiting the Cartesian region. Using indices + and - to identify the two planes relative to 
each axis, Figure 1 presents a 2-D analogy of this method, where we can calculate the area B, as a 
sum of surfaces S[+,+]= A+B+C+D, S[+,_]= C+D, Spm= A+C and S[_,_]= C, so that B = V[+,+] - V[+,_]

Extending this analogy to the three-dimensional problem, the volume of the total intersection will be 
given by: 

Venter = V+,+,+] V[v -,+ ,-F1 — V[v + ,-1 ± V[v + ,-1 ± V[-,+ ,-]+ (14) 

Translating the centre of the sphere to the origin, and applying the same translation to each of the 
planes, we can see that a number of types of intersections can be found. The most trivial case 
occurs when no intersection occurs between the three concerned planes and the sphere, where the 
volume is null except if the intersection of the three planes occurs in the x+, y+ and z+ octant, in 
which case the desired volume is that of the whole sphere. Otherwise, if an intersection between at 
least one of the three Cartesian planes and the sphere takes place, one of the following three cases 
has to be considered: 

• No intersection between any of the three planes occurs inside the sphere; 

• One, two or three intersections of two of the three planes is found inside the sphere, but the 
intersection of the three planes is located outside the sphere; 

• The intersection of the three planes is found inside the sphere. 
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Translating the centre of the sphere to the origin, and applying the same translation to each of the 
planes, we can see that a number of types of intersections can be found.  The most trivial case 
occurs when no intersection occurs between the three concerned planes and the sphere, where the 
volume is null except if the intersection of the three planes occurs in the x+, y+ and z+

• No intersection between any of the three planes occurs inside the sphere; 

 octant, in 
which case the desired volume is that of the whole sphere. Otherwise, if an intersection between at 
least one of the three Cartesian planes and the sphere takes place, one of the following three cases 
has to be considered: 

• One, two or three intersections of two of the three planes is found inside the sphere, but the 
intersection of the three planes is located outside the sphere; 

• The intersection of the three planes is found inside the sphere. 
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3.2.1 No intersection between the planes inside the sphere 

A 

C 

B 
[--1 

B-h 

Figure 1: 2-D analogy of the formula for Figure 2: Intersection of a single plane with a 
sphere. Here, a2=R2-z2. calculating volumes 

When no intersection of the planes takes place inside the sphere, the only volumes that need to be 
considered are spherical caps (see figure 1). These volumes can be calculated using a simple 
integral over the axis orthogonal to the plane: 

h27r(3R — h) 
Vcap = r-hg(R2 z2)dz = 3 

(15) 

Here, it is important to consider where the intersection between the three planes occur, the desired 
volume being null, or given by a combination of VCap calculated according to each axis. 

3.2.2 Intersection of two planes inside the sphere 

The intersection of two planes inside the sphere creates the region illustrated in figure 2. The 
volume represented by Vi, can be calculated again by an integral: 
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The required volume will, once again, be strongly dependant on the quadrant in which the 
intersection of the three planes occurs, and the number of intersections occurring inside the sphere. 

3.2.1 No intersection between the planes inside the sphere 

  

Figure 1: 2-D analogy of the formula for 
calculating volumes 

Figure 2: Intersection of a single plane with a 
sphere. Here, a2=R2-z2

When no intersection of the planes takes place inside the sphere, the only volumes that need to be 
considered are spherical caps (see figure 1). These volumes can be calculated using a simple 
integral over the axis orthogonal to the plane: 

. 

∫ −

−
=−=

R

hRCap
hRhdzzRV

3
)3()(

2
22 ππ  (15) 

Here, it is important to consider where the intersection between the three planes occur, the desired 
volume being null, or given by a combination of VCap

3.2.2 Intersection of two planes inside the sphere 

 calculated according to each axis. 

 
The intersection of two planes inside the sphere creates the region illustrated in figure 2. The 
volume represented by VInt







































−−
−














−−
−−















−−
−−−−

=

−−= ∫ ∫

222

3

222

22

222

22222

0 0

222

arctan2arctan)3(

arctan)3(2

6
1

),(

pp

pp

pp

p
pp

pp

p
pppppp

y x

Int

yxRR

yx
R

yxR

y
Rxx

yxR

x
RyyyxRyx

dxdyyxRV p p

yx

 can be calculated again by an integral: 

 (16) 

The required volume will, once again, be strongly dependant on the quadrant in which the 
intersection of the three planes occurs, and the number of intersections occurring inside the sphere. 
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3.2.3 Intersection of the three planes inside the sphere 
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Figure 3: Intersection of two planes within a Figure 4: Intersection of three planes within a 
sphere sphere 

The intersection of the three planes inside the sphere creates the region illustrated in figure 3. By 
simple observation, we can find the desired volume using an algebraic sum of already known 
volumes: 
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FORTRAN routines have been written to calculate the volumes, verified with the equivalent in 
Matlab [5], and then incorporated in the NXT: set of routines of Dragon. 

4. Verification 

4.1 Tracking 

Tracking verification was performed for a unit cell containing a multi-layered sphere. Selecting a 
few lines (5 or 6) out of the whole set, both track lengths and intersection points with the elements 
of the geometry, for various positions and radii of the spherical elements, were analysed, looking for 
errors greater than the numerical precision. 

A secondary visual verification was also performed, using module TLM:, that can be used to 
generate a Matlab file that can illustrate either the whole set of tracking lines (figure 4), or the 
intersections of the tracking lines with specified planes (figure 5), the former option producing 
figures that become rapidly overcrowded with an increasing number of lines being represented, but 
being however very useful for detecting segments out of their respective regions, or regions not 
crossed by any lines. 
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errors greater than the numerical precision. 
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generate a Matlab file that can illustrate either the whole set of tracking lines (figure 4), or the 
intersections of the tracking lines with specified planes (figure 5), the former option producing 
figures that become rapidly overcrowded with an increasing number of lines being represented, but 
being however very useful for detecting segments out of their respective regions, or regions not 
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Figure 5: Tracking visualization using the TLM: Figure 6: Intersection of tracking lines with 
module. regularly spaced planes for one region. 

4.2 Volumes 

The first verification was performed by observing that error induced in analytically calculated 
volumes by NXT: were all within the numerical precision of the machine used. Another step 
regarding verification has been performed, using the numerical volumes calculated with the 
weighted segments presented in section 2.2, to ensure both internal code consistency, and that the 
refinement of tracking parameters (track density and angular quadrature) leads to a better numerical 
volume evaluation. An example can be seen in table 1, for a simple 3 x 3 x 3 Cartesian geometry 
containing a three-layered sphere, and using an equal weight angular quadrature [6]. 

Table 1: Comparison between analytical and numerical volumes 

Track density Quadrature RMS error Maximum error Average error 
(cm-2) order (%) (%) (%) 

2 18.24550 90.06638 1.48001 
10 8 16.64095 90.06638 -2.55817 

16 16.85245 90.06638 -1.58190 
2 2.48498 10.06485 0.47423 

20 8 3.53168 10.06484 1.35797 
16 3.72187 10.06482 1.65092 
2 1.92751 7.78483 -0.04890 

50 8 1.79627 7.78483 0.52046 
16 1.78751 7.78484 0.64180 
2 0.75645 2.73456 0.29326 

100 8 0.74120 2.86485 -0.00515 
16 0.53025 2.73458 0.01692 

It should be observed that the track density is the main factor in determining the precision of the 
numerical volumes calculation, which can easily be explained by the very weak angular dependence 
of equation (8) for spherical geometries, which have no privileged spatial direction. However, when 

 

 

 

Figure 5: Tracking visualization using the TLM: 
module. 

Figure 6: Intersection of tracking lines with 
regularly spaced planes for one region. 

4.2 Volumes 

The first verification was performed by observing that error induced in analytically calculated 
volumes by NXT: were all within the numerical precision of the machine used. Another step 
regarding verification has been performed, using the numerical volumes calculated with the 
weighted segments presented in section 2.2, to ensure both internal code consistency, and that the 
refinement of tracking parameters (track density and angular quadrature) leads to a better numerical 
volume evaluation. An example can be seen in table 1, for a simple 3 x 3 x 3 Cartesian geometry 
containing a three-layered sphere, and using an equal weight angular quadrature [6]. 
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100 8 0.74120   2.86485     -0.00515 
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It should be observed that the track density is the main factor in determining the precision of the 
numerical volumes calculation, which can easily be explained by the very weak angular dependence 
of equation (8) for spherical geometries, which have no privileged spatial direction. However, when 
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CPs need to be calculated, a large enough number of angular directions is needed to represent 
neutrons directions. 

5. Validation against a Monte-Carlo calculation 

We finally present in this section a preliminary validation run that has been performed on a simple 
geometry consisting of either of eight spherical pins disposed so as to form a regular arrangement of 
pins, symmetrical in both translation and reflection (see figure 6), or randomly positioned fuel 
elements in the same global cell (figure 7). In both arrangements, the cell was a graphite-filled cube 
of 2 cm side length, while the fuel elements were 8.2% enriched, uniform uranium spheres, of 
radium 0.1 cm. 

All calculations were performed using a JEF2.2 input-based library, in ACE format for SERPENT, 
and Draglib format [7], using a SHEM 361 group structure [8] for DRAGON calculations. All self-
shielding calculations were performed using the subgroup projection method, described in ref. [9]. 

5.1 Explicit positions of the fuel elements 
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Figure 7: Test cell containing 8 regularly Figure 8: Test cell containing 8 randomly 
positioned spherical pins. positioned spherical pins. 

This regular arrangement has been validated against the same geometry analysed using the Monte-
Carlo code SERPENT. The DRAGON calculations were performed using two resonance self-
shielding methods: 

• The first (C1) and more straightforward option consists in tracking the whole geometry and 
using this information for the resonance self-shielding procedure; 

• The second (C2) faster process, where the self-shielding is performed over a single pin. 

This has been done so as to determine the extra computational burden of performing the self-
shielding on the whole geometry and to determine its effect on the precision. The SERPENT and 
DRAGON results for keff, the integrated flux and the cell averaged fission and absorption cross 
sections are presented in table 2. 
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Table 2: keff and reaction constants comparison for regularly positioned pins 

Parameter Serpent A Serpent 

(%) 

Dragon (C1) diff. (C1) 
v. Serpent 

Dragon (C2) diff. (C2) 
v. Serpent 

keff 1.72700 0.00024 1.72589 -1.1 mk 1.72465 -2.3 mk 
Integrated Flux 4.77599E+02 0.00052 4.75599E+02 -0.4 % 4.75365E+02 -0.5 % 

vxEf 3.61633E-03 0.00056 3.62886E-03 0.3 % 3.62806E-03 0.3 % 
Ea 2.09409E-03 0.00052 2.10261E-03 0.4 % 2.10365E-03 0.5 % 

Self-shielding the resonant cross sections over a single pin seems to reduce the precision of our keff 
evaluation as compared with the C1 option (same tracking options: 20 tracks per cm, with 44 
tracking directions for both geometries). However, the computing time is significantly reduced with 
the alternative self-shielding treatment (C2) (from 134 to 64 minutes on our system). Increasing ten-
fold the tracking densities selected for the C2 evaluation (which is nearly equivalent to the number 
of effective tracks in the pins for the Cl model), leads to a value of keff =1.72657 in 197 minutes, for 
a difference with SERPENT of -0.4 mk. Therefore, both the C 1 and C2 models lead to equivalent 
results provided that the tracking densities are equivalent. Accordingly, a good compromise 
between the tracking parameters and self-shielding strategies could be reached so that precision is 
maximized and computational time minimized. 

5.2 Random positioning of the fuel elements 

A new pseudo-random positions generator using sequential addition [10] was also implemented in 
DRAGON. Using this technique with an imposed density of 0.4%, we were able to randomly 
generate eight pins positions, obtaining the distribution shown in figure 7 (the maximum density we 
can obtain with this generator is of about 21%). This distribution has been fed to both SERPENT 
and the two self-shielding methods described in section 5.1. The results are given in table 3. 

Table 3: keff and reaction constants comparison for randomly distributed pins 

Parameter Serpent A Serpent 

(%) 

Dragon (C1) diff. Cl v. 
Serpent 

Dragon (C2) diff. C2 v. 
Serpent 

keff 1.72719 0.00023 1.727823 0.63 mk 1.726323 0.87 mk 
Integrated Flux 4.77141E+02 0.00050 4.77157E+02 0.003 % 4.76870E+02 -0.06 % 

vxEf 3.62017E-03 0.00054 3.62108E-03 0.03 % 3.62011E-03 -0.002 % 
Ea 2.09608E-03 0.00050 2.09575E-03 -0.01 % 2.09701E-03 0.04 % 

The results seen here follow the same trend as those obtained with the uniform positioning of the 
pins, being however even more accurate. The main reason for this increased accuracy can be 
explained by observing that the error in the numerical volumes calculated based on the tracking 
lines is reduced when randomly distributed pins are considered. As a result, the very small pin 
volumes are globally tracked better and the precision of the CP calculated is improved. This 
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computing anomaly could however be removed using finer tracking parameters, as discussed in the 
previous section. 

It can finally be noted that the random positioning of the particles increased the keff, (by about 2 mk 
for DRAGON calculations) which is to be expected due to the greater chance of seeing some of the 
fuel elements packed closer together in some portion of the cell, effectively increasing the local 
packing density. 

6. Conclusions 

The goal of this project, which was to apply full 3D collision probabilities to spherical geometries, 
has been successfully achieved. A thorough verification has been made, and preliminary validation 
has been performed, leading to results consistent with those obtained through Monte-Carlo 
simulations, both for regularly positioned fuel elements and for randomly generated positions of 
these fuel elements. 

The 3D CP method with explicit spherical representation does not eliminate the need for innovative 
double-heterogeneity formalism, such as the method proposed by Hebert [11], and can possibly be 
viewed as an additional validation tool for developers. Further validation still needs to be 
performed, mainly focusing on results obtained with random generation of spherical particles in a 
uniform matrix using a specified density, that has already been implemented, or with burnup 
calculations. Validation against double-heterogeneity treatment has already been proven conclusive, 
with further validation against TRISO in VHTR fuel to be expected. The next development 
objectives should eventually focus on implementation of capacities for the treatment of full 3D 
hexagonal cells, and integration of combined spherical-cylindrical geometries, permitting full 
treatment of prismatic VHTR geometries. 
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