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ABSTRACT — Stochastic Monte Carlo calculations are applied to the full-reactor analysis of the 
SLOWPOKE design. The temperature feedback of reactivity calculated by MCNP for either 
HEU or LEU core is in good agreement with the experimental data, with a k-eff bias of +3.3 mk 
for a HEU core and +6 mk for a LEU core. Two methods have been developed for core 
following: 1) MCNP (for transport calculation) in conjunction with WIMS (for fuel burnup 
advancement) and 2) SERPENT (that combines both transport and burnup capabilities), and both 
show very consistent results on core excess reactivity and detailed power distribution vs burnup 
and shim. 

1. Introduction 

SLOWPOKE (Safe Low Power Kritical Experiment [1]) reactors are AECL-designed research 
reactors of pool type, loaded with either HEU (93% U-235) or LEU (20%) fuel elements, cooled 
and moderated by water, and with neutron reflection provided mainly by beryllium. The 
SLOWPOKE design has a relatively small excess reactivity (subject to restoration by adding 
beryllium shims to the top reflector) but large negative temperature feedback of reactivity — a 
very special feature assuring its safe operation. 

Diffusion methods (i.e., EXTERMINATOR [2] or CITATION [3]) applied to reactor physics 
analysis of SLOWPOKE tend to give rise to large k-eff uncertainty and lack of power and 
burnup distribution in fuel elements (due to core homogenization). Stochastic Monte Carlo 
transport methods (i.e., MCNP [4] or SERPENT [5]) are able to eliminate those inaccuracies 
resulting from the diffusion approximation. 

The MCNP full-reactor models of SLOWPOKE, with a HEU or LEU core, have been created to 
study i) temperature feedback of reactivity, and ii) burnup (or core following) of the 
SLOWPOKE design. These MCNP models include the main reactor components (inside the 
reactor container) in detail, each of which may be changed with respect to geometry (e.g., the 
shim thickness or control rod position), material, or temperature. In particular, fuel elements in a 
hexagonal lattice are modeled to have the burnup-dependent compositions, which may vary not 
only from element to element but also axially in each element. Symmetric elements (each 6 or 12 
elements in every hexagonal ring) may be grouped for better statistical accuracy. 

2. Temperature Feedback 
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With the multi-temperature ENDF/B-VII cross-section library (and, if necessary, mixing 
concentrations at the library temperatures), the material temperature in each of the main reactor 
components (i.e., fuel, coolant/moderator, beryllium reflector and water reflector) can be 
changed to any desirable values for k-eff calculations. The core excess reactivity calculated by 
MCNP is biased relative to the measured values, by +3.3 mk for an HEU core and +6 mk for a 
LEU core. The temperature feedback of reactivity for the MCNP models is consistent with the 
experimental data. In general, the reactivity feedback is slightly positive at low temperatures and 
turns negative above the room temperature (Figure 1). MCNP predicts the reactivity peak in a 
range of 21-27°C for the HEU core and 32-37°C for the LEU core (cf. the experimental peak 
"points" of 20°C and 33°C, respectively), due to combination of component reactivity feedback 
of different signs and values. As the temperature of each reactor component is changing, the 
reflector feedback is mostly positive and small, while the fuel and coolant feedback is always 
negative, small for fuel and low-temperature coolant but relatively large for coolant above the 
room temperature (-10 mk and -6 mk over a 50°C change in a HEU and LEU core, respectively), 
which dominates the SLOWPOKE feedback at higher temperatures. 
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Figure 1 SLOWPOKE temperature feedback of reactivity 

3. Burnup Analysis 

For core following, the MCNP full reactor calculation is performed to provide a 3D power 
distribution, while a burnup code, such as WIMS-AECL [6] in this study, is required for fuel 
burnup advancement. The burnable materials in the MCNP model are updated using the WIMS 
pre-computed isotopic composition vs burnup. Since SLOWPOKE fuel depletes only slightly in 
practice, the whole-element (radial) power distribution does not change significantly with any 
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burnup and shimming, but the axial power distribution does change with the shim thickness 
(provided the control rod position is fixed). 

For a hypothetical operation of SLOWPOKE that restores the excess reactivity by shimming 
after every 5 kWa, the reactivity loss rate due to burnup decreases with the core burnup, from 
—0.4 - 0.5 mk/kWa at the beginning of the core life to —0.2 mk/kWa at 35 kWa. The shim 
effectiveness (i.e., mk gain per cm beryllium added) also decreases with the core burnup (or 
more correctly, with the total shim thickness), greater in the HEU core, from 3.4 mk/cm at the 
beginning to 0.1 mk/cm at 35 kWa (where the shim is full), but less in the LEU core, from —5 
mk/cm at the beginning to —3 mk/cm at 35 kWa (where the shim is —20% full, so the LEU core 
could still operate much longer) (Figure 2). 

To verify the MCNP/WIMS core following method, SERPENT that combines both Monte Carlo 
transport calculation and burnup capability is used independently. For any core of a given burnup 
and shim thickness, the SERPENT and MCMP power (and burnup) results agree very well, 
within their statistical errors (<0.5%), providing confidence in using either of the two methods. 
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Monte Carlo methods are computing intensive and time-consuming, and so are generally not 
well suited for real time core following in large reactors like NRU or CANDU that require fuel 
shuffling and replacement in time frames of the order of days. However, as this paper has 
demonstrated, Monte Carlo methods are practical for tracking burnup and reactivity shimming in 
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small low-power reactors like SLOWPOKE where reactivity adjustments occur on the order of 
months. The method is also useful for analyzing reactivity coefficients and characterizing 
experiments. 
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