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Abstract 

For advantages of higher efficiency of thermal cycle, simpler primary coolant circuit etc, 
Supercritical Water Reactor (SCWR) is much competitive in the Generation-IV nuclear system. 
Based on the supercritical water reactor engineering, NPIC has started related numerical analysis, 
test technology research, test facility design and some experimental researches of thermal hydraulics 
of supercritical water since 2005. The progress of thermal hydraulic research on SCW in NPIC in 
the past five years, will be introduced briefly, included numerical research of SCW thermal 
hydraulic performance, test technology research, design and construction of thermal hydraulic test 
facilities, and related experimental research of SCW flow resistance and heat transfer behavior. 

1. Introduction 

To meet the growing demand for clean, safe, cost-effective energy now and in the future, nuclear 
energy becomes more and more prominent with certainty of long-term supply and without adverse 
environment impacts. To enhance the future role of nuclear energy systems, six innovative nuclear 
energy systems (GFR, LFR, MSR, SFR, SCWR, VHTR) were selected to Generation W by the GIF 
for sustainability, economics, safety and reliability, and proliferation resistance and physical 
protection [1]. The SCWR system is competitive and promising in Chinese Generation IV system 
for high thermal efficiency (approaching 44%), plant simplification, billion-We plant power level 
[2-3], successive technology of Chinese PWR roadmap etc. And much of the technology base for 
the SCWR can be found in the existing PWR and in commercial supercritical-water-cooled fossil-
fired power plants. 

However, there are some immature areas in SCWR. One of the important SCW technology gaps is 
thermal hydraulic performance of the reactor system, which influences the SCWR safety, plant 
design and economics directly [4]. The supercritical water environment is unique and deficient data 
exist on the thermal hydraulic performance of water with complicated fuel assembly geometries 
under high heat flux (about megawatt per square meter level) in near-critical and pseudo-critical 
area [5]. Several topics of SCWR thermal hydraulic performance should be researched necessarily, 
for example, the fuel cladding-to-SCW heat transfer research, the SCW critical flow experiment, the 
flow stability of SCWR, the out-of-pile test of SCWR design etc[1]. 

As an important PWR R&D centre in China, Nuclear Power Institute of China (NPIC) has started 
thermal hydraulic research on SCWR since 2005. This paper introduces the progress of thermal 
hydraulic research in NPIC, including numerical analysis, test facilities design and construction, and 
some experimental researches of thermal hydraulics under supercritical water. 
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In the past 40 years, NPIC designed and constructed several thermal hydraulic facilities for 
experimental research to support PWR design, for example, Large-scale TM test loop with 10 
megawatts of power for full length rod bundles simulator test, Passive residual heat removal system 
experimental loop, Freon T/11 experimental loop, DNB thermal experimental loop etc. The outlines 
of the major thermal hydraulic experiments for PWR R&D are listed below [6-9]. 

1  CHF Test with single pipe and 4 X 4 Bundles Simulator 

1  Non-uniform heated CHF Test with 5 X 5 full length rod bundles simulator 

1 Experiment of flow instability in double pipes and seven pipes of SG 

1 Experiment of AC600/AC1000 passive residual heat removal system 

1 Experiment of Advanced Reactor Passive residual heat removal system 

1 Fundamental experiment of Passive residual heat removal system 

In 2008, NPIC designed small-scale SCW T/H test loop [10] in SJTU, China, as a member of 973 
Project on SCWR scientific problems (as shown in Figure 1). The medium of this loop is water, and 
the primary parameters are listed here: design pressure is 30MPa, design temperature is 550r, 
flowrate of the loop is 2m3/h and the heating power is 0.8MW. 

Figure 1 Small-scale SCW T/H test loop in SJTU, China 

In Sep. 2009, SCWR mechanism T/H test loop (as shown in Figure 2) was funded in NPIC for 
experiment research on SCW flow resistance and heat transfer with single/double pipe. The 
mechanism T/11 test loop not only supports SCW T-H test technology research, but also produces 
basic thermal hydraulic experimental data of SCW for CFD model and numerical research. The 
primary parameters of the loop are listed here: design pressure is 30MPa, design temperature is 
550'C, flowrate of the loop is 0.5m3/h and the heating power is 0.32MW. 
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Figure 2 SCWR mechanism T/H test loop, funded in 2009, NPIC 
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3. Thermal-hydraulic numerical research 

Various numerical T-H researches of SC fluids were performed in the past 30 years. In general, the 
convection heat transfer of SC fluids was treated as single phase convection heat transfer with 
variational properties. In this method, some explanation of the flowing and heat transfer mechanism 
of SC fluids was got, and primary thermal hydraulic computation of SCWR was preformed. 
However, there is pivotal doubt about the applicability of turbulence model and wall treatment in 
sub-critical pressure to supercritical condition, especially when heat transfer deterioration occurs. 
Several numerical investigations on thermal hydraulic performances of SCW were started in NPIC. 

3.1 Evaluation of CFD model for SCW 

The investigation on the applicability of the computational models was performed. Based on the 
heat transfer experimental data of SCW in vertical circular tubes from publications, the 
computational results with different turbulence models and wall treatments in Fluent6.3 and CFX10 
at the same parameters to the experiment were compared. When heat transfer deterioration does not 
occur, the prediction with the RNG k-a turbulence model and the low-Re two-layer model is the 
best, as shown in Figure 3; When heat transfer deterioration occurs, the computational results with 
the SST turbulence model and the low-Re k-w model in CFX10 approximately conform to 
experimental data and theory, but the same turbulence model in Fluent6.3 can't, as shown in Figure 
4. 

490 

12 470 
1f)

m
450 

430 

(11 410 

390 

370 

350 

• 

• 

* experimental data 

low Re model meth 

wall function met od 

1500 1700 1900 2100 2300 2500 2700 

h of bulk flow (kJ/kg) 

The 2nd Canada-China Joint Workshop on Supercritical Water-Cooled Reactors (CCSC-2010) P059 
Toronto, Ontario, Canada, April 25-28, 2010 

     

Figure 2 SCWR mechanism T/H test loop, funded in 2009, NPIC 

3. Thermal-hydraulic numerical research 

Various numerical T-H researches of SC fluids were performed in the past 30 years. In general, the 
convection heat transfer of SC fluids was treated as single phase convection heat transfer with 
variational properties. In this method, some explanation of the flowing and heat transfer mechanism 
of SC fluids was got, and primary thermal hydraulic computation of SCWR was preformed. 
However, there is pivotal doubt about the applicability of turbulence model and wall treatment in 
sub-critical pressure to supercritical condition, especially when heat transfer deterioration occurs. 
Several numerical investigations on thermal hydraulic performances of SCW were started in NPIC. 

3.1 Evaluation of CFD model for SCW 

The investigation on the applicability of the computational models was performed. Based on the 
heat transfer experimental data of SCW in vertical circular tubes from publications, the 
computational results with different turbulence models and wall treatments in Fluent6.3 and CFX10 
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Figure 3. Computational results in two method compared with Yamagata data [11] (24.52MPa, 
1260kg/m2s, 698kW/m2, with 7.5mm diameter, vertical tube, upward flow) 
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Figure 4. Computational results with different turbulence models in low-Re wall treatment method 
compared with Ornatskijdata [12] (25.5MPa, 1500 kg/m2s, 1630 kW/m2, with 3.0mm diameter, 

vertical tube, upward flow) 

3.2 T-H Numerical research of SCW hi tube 

The investigation on the thermal-hydraulic characteristic of supercritical water in vertical circular 
tubes was performed with numerical simulation and theoretical analysis [13]. Based on the 
investigative results, the gravity plays the main role in heat transfer deterioration, but it has little 
influence in heat transfer enhancement. Heat transfer coefficient relates strongly to the average 
temperature of wall area other than the bulk temperature, when the average temperature of wall area 
approaches the pseudo-critical temperature, the heat transfer coefficient becomes larger. Heat flux 
and mass flux influence heat transfer by changing the radial velocity grads or turbulent kinetic 
energy near the heating wall, while pressure influences heat transfer by changing the thermal-
physical properties of the fluid near the heating wall. 

3.3 Numerical research of SCW with local geometrical components 

The numerical investigation on heat transfer to supercritical water in simple channels with local 
geometrical components was performed with RNG k-e turbulence model and Scalable wall function 
in CFX10. The circular baffle (OD.8.0mm, ID.6.0mm, 500mm to the outlet) in vertical tube (1.0m 
long, 8.0mm inner diameter) with upward SCWR flow was selected as the first local geometrical 
component, as shown in Figure 5. Based on the results, the circular baffle enhanced heat transfer 
greatly, as shown in Figure 6. The circular baffle changed streamline of the boundary layer and 
mixed the fluid in boundary layer with bulk flow. After the mixture, radial temperature gradient of 
the flow decreased and the average temperature of boundary layer decreased rapidly, but recovered 
after the circular baffle in some distance, as shown in Figure 7. 
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Figure 5. Design of circular baffle in vertical tube 
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Figure 6. Temperature distributing of different sections in axial direction 
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P059 

The vane (horizontal projection 3.5 X 3mm triangular shape, 50° elevation, rotational symmetry, 
500mm to the outlet) in vertical rectangular channel (9.6x9.6mm, 1.0m long)with one heated rod 
(8.0mm inner diameter) with upward SCWR flow was selected as the second local geometrical 
component, as shown in Figure 8[14]. Based on the results, the circular baffle enhanced heat 
transfer greatly and prevent from heat transfer deterioration effectively, as shown in Figure 9 and 
10. The vane produced secondary flow downstream and mixed higher temperature fluid at the 
narrowest flow channel with lower temperature fluid at the widest flow channel, as a result, the 
circumferential temperature distributing of the rod became less asymmetrical, as shown in Figure 
11. 
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Figure 8. the design of vertical rectangular channel with The vane 
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Figure 11. Cross section nephogram of secondary flow, 600mm to the inlet 

The 2nd Canada-China Joint Workshop on Supercritical Water-Cooled Reactors (CCSC-2010) P059 
Toronto, Ontario, Canada, April 25-28, 2010 

0.0 0.2 0.4 0.6 0.8 1.0
620

640

660

680

700

720

740

760

780

w
al

l t
em

p.
(k

)

length in Z axiac (m)

 A point without mixing
 B point without mixing
 A point with mixing
 B point with mixing

 
Figure 9. Wall temperature distribution of Point A and B in axial direction 
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The purpose of the SCW experimental research is to develop the basic thermal hydraulic database 
for the development of China SCWR. The SCWR mechanism T/H test loop of water in NPIC is 
used. The test section of smooth circular tubes and with circular baffle and vanes is being tested, 
which focus on heat transfer, flow resistance, especially heat transfer deterioration in supercritical 
condition. 

5. Conclusion 

NPIC has done several work on numerical analysis, test technology research, test facility design and 
some experimental research of thermal hydraulics under supercritical water in the past 5 years, and 
there is a professional team on SCWR thermal hydraulic research in NPIC, which consists of 20 
engineers. Based on these foundations and long-term research program, NPIC will accept the 
challenges of thermal hydraulic research on SCWR in the future. 
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