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Abstract 

The corrosion behavior of a ferritic/martensitic steel P92 exposed to supercritical 

water (SCW) at 500 to 600 CI and 25 MPa was investigated by means of gravimetry, 

scanning electron microscope/energy dispersive X-ray spectroscopy and X-ray 

diffraction. A dual-layered oxide scale, which was mainly composed of an outer 

magnetite layer and an inner magnetite/spinel-mixed layer, formed on P92. The initial 

oxide scale was rather porous, while the porosity decreased with an increase of 

exposure time. Oxidation rates at three different temperatures followed a parabolic 

law. The oxidation at 600 CI was so severe that cracks occurred along grain 

boundaries in the oxide scale. A probable corrosion mechanism for P92 exposed to 

SCW was proposed based on the above observations, focusing on oxide formation by 

oxygen absorption without any metallic dissolution. 
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1. Introduction 

The supercritical water reactor (SCWR) design has been selected as one of the 

reactor concepts for future Generation IV nuclear reactor systems, because of its 

simplified design, smaller volume and higher thermal efficiency than current light 

water reactors (LWRs) [1-3]. However, above the thermodynamic critical point 

(374.2 CI and 22.1 MPa), the supercritical water (SCW) coolant is expected to be more 

corrosive to structural materials that are commonly used in nuclear reactors and fossil 

power plants[4, 5]. In order to put the SCWR design into practice, experimental 

evaluation of proposed structural materials is urgently needed. Ferritic/martensitic 

(F/M) steels, austenitic stainless steels and Ni-based alloys are considered as 

candidates for future SCWR systems [6-17]. Among these classes of alloys, austenitic 

steels generally have a relatively low thermal conductivity, high thermal expansion 

coefficient, and poor weldability. The Ni-based alloys also have low thermal 

conductivity. More importantly, these two categories of alloys contain substantial 

amounts of Ni, which is susceptible to transmutation under the influence of irradiation 

[6]. Consequently, low Ni or Ni-free F/M steels present an attractive alternative. 

Elevated-temperature F/M steels are expected for in-core (cladding and ducts) and 

out-of-core (pressure vessel, piping, etc.) applications [1], since F/M steels with body 

centered cubic structure provide good swelling resistance, low thermal expansion 

coefficient and high thermal conductivity. 

The 9-12% Cr F/M steels, such as P91 and P92, exhibit good processing ability 

and mechanical properties, combined with satisfactory corrosion resistance at elevated 
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temperatures [15]. Compared with P91, P92 shows improved high-temperature 

mechanical properties, especially a 1020% increase in creep strength at 600 CI for 

100, 000 h [19, 20], which is attributed to solution strengthening by W and Mo 

additions, and precipitation strengthening by V and Nb additions. Unlike P91, only a 

few investigations of the corrosion of P92 in SCW have been carried out. Based on 

cross-sectional TEM observations, Jang found that two 9Cr steels followed parabolic 

oxidation kinetics in SCW, and the scale consisted of three distinctive layers, namely 

Fe3O4, (Fe, Cr)30 4, and an internally oxidized zone [21]. Through glow discharge 

optical emission spectroscopy analyses, Bojinov identified a dual-layered oxide film 

on P9211 steel exposed to SCW, with a high Cr concentration in the inner layer [22]. 

More investigations of the corrosion of P92 in SCW are necessary for SCWR 

development. 

The present work investigates the corrosion performance of P92 exposed to 

SCW at 500 to 600 CI under a pressure of 25 MPa, to at evaluate the corrosion 

behavior of P92 as a promising candidate material for the SCWR. 

2. Experimental 

The F/M steel P92 test material was supplied by Panzhihua Iron & Steel 

Corporation, and had been annealed at 1050 CI for 30 min and tempered at 780 CI for 

60 min. The nominal chemical composition tested by X-ray fluorescence 

spectroscopy (XRF) is listed in Table 1. The as-received P92 stock was first cut into 

test samples with a dimension of about 40 mm x 20 mm x 1.5 mm and then 

mechanically polished to a 1 gm diamond finish. Then the samples were cleaned with 
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acetone and ultrasonically rinsed with de-ionized water for 5 min. 

Table 1 Chemical composition (wt.%) of the tested material by XRF 

C Si Mn Cr Al Nb B Ni Cu Mo W V P S N 

Fe 

0.13 0.50 0.50 9.50 0.04 0.09 0.001 0.40 0.25 0.60 2.0 0.25 0.02 0.01 0.03 bal. 

All SCW exposure tests were performed in a 2 L autoclave at 500, 550 and 600 

CI respectively, at a pressure of 25 MPa for time periods up to 1000 h. For the inlet 

water, the dissolved oxygen concentration was controlled below 10 ppb by bubbling 

pure nitrogen through it, while the water conductivity (at 25 CI) was kept under 0.1 

µS/cm. 

After completion of each exposure period, the corrosion resistance was evaluated 

by gravimetry, as well as surface and cross-sectional analyses. An ESJ180-4 electric 

balance, with an accuracy of 0.1 mg, was used to make weight change measurements. 

An FEI Nano 400 scanning electron microscope (SEM), equipped with energy 

dispersive X-ray spectroscopy (EDS), was employed to observe oxide morphology 

and analyze its chemical composition across the oxide thickness. Surface oxide phases 

were identified by a Philips X' Pert PRO MRD X-ray diffractometer (XRD) with a Cu 

ka radiation source. 

3. Results and discussion 

The plan-view images of SCW-exposed samples are shown in Fig. 1. The initial 

oxide scale had a rather high porosity, which decreased along with the exposure time. 

It is proposed that the formation of the pores is related to the defect types present in 
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the magnetite structure [23, 24]. There are two major defect types in magnetite, 

namely interstitial Fe2+
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Fig. 1 SEM images of the surface morphology of the samples exposed to 

SCW under a pressure of 25 MPa (a) at 500 Fi for 200 h, (b) at 500 Fi for 

800 h, (c) at 550 Fi for 200 h, (d) at 550 19 for 800 h, (e) at 600 19 for 200 

h. 

and vacancies, which may collapse into pores if the concentration is high enough. In 
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Fe-Cr alloys, oxides grow predominantly by outward diffusion of cations and inward 

diffusion of oxygen, which is probably affected by short circuit paths such as pores, 

SEM scan location 
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layer layer zone; . 
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Fig, 2 Cross-sectional SEM image of the sample exposed to 

SCW at 550 El and 25 MPa for 1000 h. 

cracks and grain boundaries [25, 26]. The decrease in the number of pores indicates 

their weakening influence on the diffusion of cations and oxygen. All the samples 

formed uniform and adhesive scales without any evidence of exfoliation, while the 

test temperature played an important role in the integrity of the oxide scales. At 500 

and 550 M, no cracks occurred in the scales. However, at 600 1B, cracks occurred 

along oxide grain boundaries in the scale, as illustrated in Fig. 1(e). A Higher 

corrosion temperature will naturally introduce faster oxide development, accompanied 

by accumulated growth stress, which may be released by crack initiation and 

propagation through the scale. 

The cross-sectional morphology of the sample exposed to SCW at 550 M and 25 

MPa for 1000 h, and the corresponding composition profiles determined by EDS, are 

shown in Figs. 2 and 3. The oxide scale was mainly composed of two different layers, 
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along with an innermost internal oxidation zone, which is in the bulk alloy and close 

to the oxide/metal interface. The outer layer between points labeled 1 and 2 has an 

approximate thickness of 12µm, which is enriched in Fe and depleted in Cr. The 
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Fig. 3 Composition profiles of (a) major elements Fe, Cr, 0, and (b) 

trace elements W, Mo, V, Ni, Mn across the oxide thickness of the 

sample exposed to SCW at 550 El and 25 MPa for 1000 h. 

layer between the points labeled 2 and 3 has an approximate thickness of 8µm, where 

both Fe and Cr are enriched. The innermost internal oxidation zone between the 

points labeled 3 and 4 has an approximate thickness of 5µm, which is charactered by 

a gradual variation of the concentration alloying elements and oxygen from the oxide 
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to the matrix. In addition to the major elements Fe, Cr and 0, trace elements such as 

W, Mo, V, Ni and Mn were also detected due to their importance in alloy design, as 

described in the introduction. W, Mo and V were found to be enriched in the inner 

layer while they were depleted in the outer layer. Ni was enriched at the interface 

between the oxide and substrate, and depleted in 

C 
a) 

" C 

U)
C 
a) 
C 

woomowiwo4 

■ 
• Fe304/FeCr204

D (x-Fe 

20 30 40 50 

20 

60 70 80 

Fig. 4 XRD pattern of the sample exposed to SCW at 550 El 

and 25 MPa for 1000 h. 

Fe
3
0

4 FeCr204

35.0 35.2 35.4 35.6 

20 

Fig. 5 Magnified overlapping local XRD peaks around 

35.5 ° (20) in Fig. 4. 

35.8 36.0 

- s - 

  
 

- 8 - 

to the matrix. In addition to the major elements Fe, Cr and O, trace elements such as 

W, Mo, V, Ni and Mn were also detected due to their importance in alloy design, as 

described in the introduction. W, Mo and V were found to be enriched in the inner 

layer while they were depleted in the outer layer. Ni was enriched at the interface 

between the oxide and substrate, and depleted in 

 

Fig. 5 Magnified overlapping local XRD peaks around 
35.5°(2θ) in Fig. 4. 

Fig. 4 XRD pattern of the sample exposed to SCW at 550 �	
  
and 25 MPa for 1000 h. 
 

The 2nd Canada-China Joint Workshop on Supercritical Water-Cooled Reactors (CCSC-2010) 
Toronto, Ontario, Canada, April 25-28, 2010 Page 8 of 15



The 2nd Canada-China Joint Workshop on Supercritical Water-Cooled Reactors (CCSC-2010) 
Toronto, Ontario, Canada, April 25-28, 2010 Page 9 of 15 

the oxide layer. Mn is enriched in the inner layer, but with a concentration in the outer 

oxide layer close to that in the matrix. Based on the current investigations, no 

conclusions can be drawn on the correlation between the Mn content and the 

corrosion behavior of F/M steels [27, 28]. 

The different distribution of alloying elements is attributed to their different 

affmities for oxygen and outward diffusion rates in the scale [29]. The oxidation 

probably proceeds as follows. Firstly, Cr and Fe are oxidized by reacting with 

diffused oxygen to form an inner Fe/Cr-mixed oxide layer. Simultaneously, the 

formation of this layer would lower the oxygen potential at the oxide/metal interface, 

making Fe oxide less stable, resulting in outward diffusion of Fe and formation an 

outer Fe oxide layer. The formation of the inner oxide layer, acting as a barrier against 

the diffusion of metals and oxygen, would hamper further development of the scale. 

W, Mo and V are enriched in the inner oxide layer due to their relatively immobility 

through the barrier layer. 

The XRD pattern of the sample exposed at 550 CI and 25 MPa for 1000 h is 

shown in Fig. 4, in which the peaks for magnetite (Fe30 4) and/or spinel (FeCr20 4) are 

observed. The magnified peaks around 35.5 ° (20) shown in Fig. 5 indicate the 

existence of both magnetite and mixed Fe-Cr oxides with a spinel structure in the 

scale, which overlap to some extent. Combination of XRD and SEM/EDS analyses 

suggest that the outer Fe-rich layer is probably magnetite, while the inner Fe/Cr-rich 

layer is a mixture of magnetite and a Fe- Cr oxide with a spinel structure. 

The weight gain versus exposure time is plotted in Fig. 6. The oxidation at 600 CI 
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was more severe than that at 500 and 550 M. Since the test time (several weeks) is 

much shorter than the service time (tens of years) of nuclear reactors, an extrapolation 

based on fitting available experimental data is needed to provide a reasonable 

prediction oxide growth with prolonged exposure. The experimental weight gain data 

can be fitted using the following equation [7]: 

WG — Air (1) 

where WG is the weight change of P92 in mg/dm2, A' is rate constant in mg/dm2/h, t 

is exposure time in h, and n is an exponent describing the time dependence of the 

oxide growth. Both A' and n are shown in Fig.6. The weight gain data indicate a 

parabolic oxidation law. 
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Fig. 6 Weight gain as a function of exposure time obtained 

from the samples exposed to SCW at 500 to 603 El and 25 
MPa. 

The weight gain versus oxide thickness is plotted in Fig. 7, and follows a linear 

function. Since the weight gain is mainly induced by oxygen trapped in the oxide 

scale, the linear proportionality indicates that the scale density is nearly constant. 
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function. Since the weight gain is mainly induced by oxygen trapped in the oxide 

scale, the linear proportionality indicates that the scale density is nearly constant. 

Fig. 6 Weight gain as a function of exposure time obtained 
from the samples exposed to SCW at 500 to	
   600 �	
   and 25 
MPa.  
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Weight gain occurred due to oxygen absorption during exposure, which was estimated 

by the following equation: 

ia,G0 = p outcry SW 0 _Oider I f Fe304 )+ P inne,V innerAM o_biner AlF0304_Feco 4 ) (2) 

where AGo is the amount of absorbed oxygen, Ana, and pb,,, are the outer and inner 

layer densities respectively, va,a, and yin., are the outer and inner layer thicknesses, 
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Fig. 7 Weight gain as a function of scale thickness for the 

samples exposed to SCW at 550 El and 25 MPa. 

respectively, Mo-maer and Mo-inner are the mole masses of oxygen in F0304 and 

Fe30 4-PeCr20 4, respectively, AfFto, and M Fe304-Fentatare the mole masses of Fe304 

and Fe304-FeCr204, respectively, and S is the surface area of the exposed sample. 

Although the precise fraction of each oxide type in the Fe304-FeCr204 binary oxide 

was unknown, there is no significant difference between the densities of Fe3O4 and 

FeCr204. Therefore the ratio of F0304 and Feer204 was assumed to be 1:1, which 

would not result in any significant error concerning the current evaluation of the 

absorbed oxygen amount. Taking the sample exposed at 550 M and 25 MPa for 1000 h 
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for example, calculations are based on equation 2, in which all the related parameters 

are available. MO-outer, MO-inner, MFe304 and M  Fe304-FeCr204 are already known. vouter 

and Vinner are obtained from SEM observations. S is based on the dimensions of the 

samples. Pouter and Pinner are taken from previous work [30]. The results and related 

parameters in this calculation are listed in Table 2. The calculated amount of oxygen 

absorbed in the scale was 43.01 mg, very close to the measured weight gain (42.80 

mg). This implies that the corrosion behavior of the P92 steel in SCW is similar to 

that in gaseous environment where only solid growth takes place without any metallic 

dissolution, which is in accord with the results by Yi [30]. 

Table 2 Estimation the amount of absorbed oxygen in the surface oxide 

Inner oxide layer outer oxide layer 

Oxide 

Thickness (pm) 

Fe3O4-FeCr2O4 binary (1:1) 

9.18 

Fe3O4

9.94 

Surface area (mm2) 1602.00 1602.00 

Density (g/cm3) 4.91 5.17 

O content in oxide (wt. %) 28.10 27.60 

O absorbed (mg) 20.29 22.72 

Calculated total 0 absorbed (mg) 43.01 

Measured weight gain (mg) 42.80 

4. Conclusions 

The corrosion response of ferritic/martensitic steel P92 was tested in SCW at 500 
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to 600 CI and 25 MPa with a dissolved oxygen content below 10 ppb for up to 1000 h. 

A dual-layered oxide scale, which composed of an outer magnetite layer and an inner 

magnetite/Fe-Cr spinel mixed oxide layer, formed on P92. The initial oxide scale had 

a rather high porosity, which decreased with the exposure time. Oxidation rates of all 

the samples followed a parabolic law, and the time exponent n increased with the 

exposure temperature. The corrosion at 600 CI was so severe that cracks occurred 

along the oxide grain boundaries in the scale. The corrosion mechanism for P92 

exposed in SCW is proposed to be absorption of oxygen without metallic dissolution, 

similar to gas-phase oxidation. 
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