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Abstract 

In this paper, we present the recent development of our 3D characteristics 
solver MCI. The Self-Collision Rebalancing (SCR) technique uses the self-
collision probabilities to reduce the total iteration number. The proof of 
equivalence between the Collision Probabilities (CP) method and the char-
acteristics method is given for finite 3D domains. The Track Merging Tech-
nique (TMT) is another new technique used by our characteristics solver. 
The neighboring lines are merged together in order to reduce the total num-
ber of lines. The TMT is an approximation of second order and can also be 
used by other tracking lines dependent solver. 

1 Introduction 

DRAGON[1] is a lattice code which uses the Collision Probabilities (CP) 
method for solving the neutron transport equation in a arbitrary geometrical 
domain. As an alternative solution scheme, the Method Of Characteristics 
(MOC) is currently under development for both 2D (module MOCC[9], using 
cyclic tracking lines) and 3D geometries (module MCI[2, 3], using non-cyclic 
tracking lines). The main goal of this development is to obtain the capability 
to treat large problems with a very accurate method for reference calcula-
tions. 
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The MOC has been used in the nuclear physics since the seventies. Be-
cause of its intrinsic properties, most of the standard acceleration techniques 
could not be used (namely diffusion synthetic acceleration cannot be directly 
used in most MOC codes due to their restricted geometrical application) or 
are not efficient enough [3]. Several acceleration techniques have been devel-
oped which are particular to the MOC. CACTUS, the cyclic characteristics 
solver of WIMS, has used the same algorithm for many years: the energy 
group rebalancing algorithm [6]. This algorithm consists in solving a homo-
geneous problem at the end of every iteration and rescaling the characteristics 
flux according to the homogeneous solution. Larger spatial problems benefit 
less from the energy rebalancing of the homogeneous calculation because the 
spatial dependence of the flux solution converges much more slowly. Zika 
and Adams employ a Transport Synthetic Acceleration (TSA) in their long 
characteristics code [7]. Like others synthetics methods, the idea is to solve 
a low-order approximation which is represented using a simplified transport 
operator in order to accelerate the high-order approximation which is the 
original transport operator. The low-order equation used in TSA is a mod-
ified transport problem in which the scattering cross section is artificially 
reduced. The low-order equation is also solved by a long characteristics 
method but using a cruder angular quadrature and a coarser ray spacing 
than the high order problem. These two simplifications significantly reduce 
the number of unknowns in the low order equations and result in consider-
able savings in computational cost. Unfortunatly, for several categories of 
problems, restriction and prolongation operations must be defined in order 
to map between the high and low order boundary angular grids. 

In Korea, the Angular Dependent Rebalance (ADR) iteration method was 
studied when applying to the Step Characteristic (SC) scheme for transport 
problems in equilateral triangular meshes where the unknowns are surface-
averaged and the volume-averaged quantities [10]. The rebalancing factor 
is only defined on the edges of the triangular meshes and its angular de-
pendency is assumed to be uniform for each sextant. However, it will be 
very difficult to generate the ADR method for an arbitrary geometry and 
the accuracy of the SC scheme is not very good. In the environment of 
the interface-current code TDT (part of APOLLO2), Sanchez and Chetaine 
have developed a characteristics method for unstructured two-dimensional 
geometries [8]. Based on piecewise uniform and isotropic approximations for 
cell entering and exiting fluxes, they have developed a synthetic acceleration 
technique for their characteristics method. However, the synthetic acceler-
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ation equations are nonsymmetrical and the size of the system of equations 
is very large. There are two methods for the inner iteration acceleration in 
the MCCG code (Method of Characteristics in Complicated Geometry): the 
Current/Flux Ratio method (CFR) and the Consistent Diffusion Differenc-
ing method (CDD) [5]. The first one is based upon the ratio of the outgoing 
one-side current and the total flux after transport sweep. The second one is 
generated using the consistent diffusion differencing approach for ray-tracing 
[4]. 

We have also developed an acceleration method for our characteristics 
module MCI: the Self-Collision Rebalancing method (SCR). Based on the 
equivalence of the Collision Probabilities (CP) method and the Method Of 
Characteristics (MOC), the SCR uses the self-collision probabilities (colli-
sion probabilities from one region to itself) in order to rebalance the energy 
distribution of the scalar flux for each region separately. A new technique 
now used by our characteristics solver is called the Track Merging Technique 
(TMT) of the tracking lines. Using this technique, two neighboring tracking 
lines crossing the same regions in the same order are merged together for 
one line associated with the sum of the weights of each of them. The TMT 
method is generally very efficient because more than a half of tracking lines 
are merged together without loosing accuracy. 

The equivalence of the CP method and the MOC was already proved for 
infinite domains[9]. In this paper, we will first show a similar equivalence but 
for finite domains where isotropic boundary conditions apply on all external 
surfaces. We will then develop the SCR method, and show that it can be used 
in conjunction with our new TMT approximation. We will also demonstrate 
that this new merging technique provides an approximation of order two 
for the segment-length differences over successive tracking lines. Numerical 
results will show the consistence of the SCR method and the performance of 
TMT acceleration on the usual MCI solver. 
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2 Characteristics in Finite 3D Domains 

Assuming a finite domain split into homogeneous regions the average 
(group-dependent) flux 4 is given by: 

= f d3r f d2Q (13.(f, 
Vi 

tK 

= f d 47 1 f dt X (T1 ,t)(1)(15' + 
to 

(1) 

The boundary of the domain is also split into surfaces S,„, and the outward 
surface current J±,a  is given by: 

J+,a = f d2r s f d2SIS • 17-±(1)(771s , f2) 
an-

= f d4T x,„(fc, tK)43(5'+ C2) (2) 

ti

A characteristics line I is determined by its orientation SZ along with a refer-
ence starting point p'for the line. The variable t refers to the local coordinates 
on the tracking line and the function Xi(T,t) (the function X,„(T,t)) is defined 
as 1 if the point /5' + tf2 (the point /5'± ticQ) on the line I' is in the region 

ti

V (on the surface Sc,), and 0 otherwise. We assume that a tracking line 
changes regions K times when going through the domain, and the crossing 
points r k = 15' + tgl are ordered in the neutron traveling direction. The F 
domain is covered by a quadrature set of solid angles and by scanning the 
plane 7rO perpendicular to the selected direction 52 for the starting point .15'. 
The d4T element is then composed of a solid angle element d2S2 multiplied 
by the corresponding plane element d2p. 

ti

For a chosen line T, the following data are required for the characteristics 
calculation: 

• Lk = tk — tk_1: the length of the segment k; 

• Nk: the region number of the segment k for k = 1, , K, 
the entering surface number No and the exit surface number NK+1. 

The angular fluxes on the crossing points are defined as: 

Ok(T) = )(6, , k = 0,1, . . . , K. 

4 
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For each segment on the line, we define the integrated angular flux as: 

Lk 

Lkcbk(T) = dt(1)(6-1 ± k = 1, , K. (4) 

Using the above definitions, the integrated flux in Eq. (1) becomes: 

V3 d4T > 8iNkLkok(774) 
k=1 

and the surface current in Eq (2) becomes: 

J a = f d4T 6aNK+10K(f) 

(5) 

(6) 

where 8 is the usual Kronecker symbol. Note that the value of K depends ti
of the line T. The segment lengths are renormalized to preserve the true 
volumes, i.e. to insure the following equality: 

Vi = f d2p (5iNkLk• 
wet k=1 

(7) 

In order to simplify the writing of the equations, the following local notations 
are introduced: 

1‘ 
Uk = 1\Tk ) qk = 

(2 47r4
• 

 
(8)

The differential transport equation for angular flux on the segment k is then: 

(—ds + 
Uk)

(1)(fic_1 + = qk (9) 

for s e [0, Lk]. The general solution to (9) on the segment is: 

43(6_1 ei) = O 
1 — e'lvt

k-1(T)e't + qk  (10) 
Uk 

ti
Knowing the inward angular flux Ok_1(f), the outward angular flux value at 
t = Lk can thus be computed as: 

Ok(T) = Ok-1(f)e-ckLk qk

5 

1 — e'k Lk 

Uk 
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The differential transport equation for angular flux on the segment k is then: 

(9) 

for s E [O, Lk]- The general solution to (9) on the segment is: 

A A _, 1 - e-ukt 
<I>(ric-1 + tn, n) = c/Jk-1(T)e-Ukt + Qk __ _ 

<Tk 
(10) 

Knowing the inward angular flux c/Jk-i(T), the outward angular flux value at 
t = Lk can thus be computed as: 

(11) 
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The integrated angular flux can also be found after integration of (10) over 
the segment k: 

LkOk(f) = Ok-1(f) 
1 — e- ckLk 

0-k 

± qk 
(Lk 1 - e-crk") 

0-k 
5 2 

k 

In void regions, i.e. uk = 0, we have: 

cbk(T) = cbk(T) = Ok-1(T) 

(12) 

(13) 

In the practice, the repeated computation of the exponential function is par-
ticularly costly for the characteristics solver. Therefore, we have adopted the 
tabulated exponentials used in CACTUS of WIMS8 [6]. However, the exact 
exponentials can also be chosen by the user and, in that case, the tabulated 
exponentials are used in the first iterations and the resolution is completed 
with the exact exponentials. 

To complete the characteristics resolution, we introduce the following 
isotropic reflection boundary condition: 

J-, a  = J+,a

00(T) = 1  J- a 7I-Sa ' 

where Sic, is the entering surface of the line fl. 

(14) 

(15) 

3 Equivalence 
with Collision Probabilities Solver 

To simplify the notations, we introduce the following segment-dependent 
factors for o-k 0: 

1 — e'rkLk 
ck(71) = 

0-k 

Lk 1 - e -c k Lk 
dk(T) =

0-k 5  k 

6 

(16) 

(17) 
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For void regions, i.e. Uk = 0, the above factors are defined by their limit 
values respectively: 

Ck(T) = Lk, dk(f) = 2Lk (18) 

Our intent is now to recursively add all contributions appearing in the ti
generic term LkOk(f) and explicitly eliminate, from the formula, the flux ti
value Ok(f) on the crossing points 77..k for k = 1,2, . . . , K. We thus start 
from: 

LkOk(T) = qkdk(1 ) Ok-1(1 )Ck(f) (19) 

The inward angular flux in the above equation may be eliminated explicitly 
by successively applying the following recurrence relation: 

0/ (f) = 0/-1(f)e' i + qtct (f) (20) 

for 1= k -1,k— 2, . . . , 1. We end up with an equation without intermediate 
angular flux values on the crossing points: 

k-1 

LkOk(7 ) = qkdk(f) E Tc,(f)e—rt,k-ick(f) + oo(f)e-Ti'k-ick(f) 
1=1 

where Tn,k is the optical path defined by: 

0-,/,/, if n < k 
Tnk I t n

0, otherwise. 

Similarly, we can calculate the outward flux of the domain by: 

k(T) = oo(f)e-TiK + E i=i 
It's now possible to group all contributions for the segments pertinent 

to region j coming from isotropic sources in other regions i and from the 
isotropic current on the inward surface a: 

(21) 

(22) 

qicie —T1+1,K (23) 

E 8 NkLkcbk = J-,aFaj(f) E 47,z 1 17(f ) (24) 
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and with similar symbols we can rewrite Eq (23) as 

OK = Q 
• ,aFao(T) + FigT) 

7r 
(25) 

where the F's in the above equations are computed as: 

K K k-1 

Fii(T) =8 ij E (siNkdk(T) + E E 8iNk Jim ci (T)e- ''' -ick(T) (26) 
k=1 k=1 1=1 

K 
F a i(f) = j allo E jiNk (27) 

k=1 

K 
Fo(T) = E (soNK±1(yiNkcke—,±1,K (28) 

k=1 

Fa0( 1 ) (5allo8 ONK-k1e  (29) 

In the CP method, the definitions of different probabilities are: 

1 
d3r f d37! 

exp(-7-(771', F-1)) 
Pi3 =   (30) 

47rV. 3 Li V 3 T1
2 

1 — 
Paj = — d3r d2rs ( s2 • AL)exp( ST (r 2ol) 

71S a  v. S,,, 1 
-0, (31) 

3 r  — 1

PO =  d2rs f d3r' (f/ • Ar ) 
exp(-7-(771', r.$)) 

47rVi is,0  (32) 
v- ± 1f°'3 

Pap
= 

711

 
d2r s d2r s

(''1. . I4)( . ,,cL)exp(=Trs,r.$)) 
(33) 1 .

Ss 5,0 1r 's — .s12sc, 

If we denote the optical path contributions 7- (17°* 1 71 on the local coordinates 
s' < s of each tracking line, after the following change of variables: 

d3r d371 = d IT ds ds' 177.°' — 712 (34) 

d3r d2rs' = d IT ds ors — 712 (35) 

d2rs  d37! = d IT ds' 177°. f•s12 (36) 

d2rs d2rs'  = dIT T7 gs 2 (37) 
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the Eqn (30)-(33) become: 
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Paj 

Pao = -
1 

f d IT X (i 7 $ 0)X (TT s )e T(°'sK) (41) 
7510 r  a '  1(

It is easily shown that the analytical expressions of these probabilities are: 

1 f 

Pi3 = 4717i i r d411 Fii(71)

p a i = 1  f

f

d IT F 0 4) aj 7rSa r
1 

Pip 
= 4717. ir d4T Fog')

Pad = f d4T Fad (7') 
7roo 

The above leads to the following equations: 

= E J-,aPaj E QiVPij 

4,0 = E JThaPao + E Qyz/D20 

which are equivalent to Eqn (5)-(6). 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

4 Self-Collision Rebalancing 

We now consider the multigroup problem. From Eqn (5), (6), (11) and (12), 
we obtain: 

(!7 (1) ,iii+ 43(23 
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where 

(1)i,in 

4,0 
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k=1 
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Cfg

(50) 

(51) 

(52) 

(53) 

In the above equations, the index ja denote the last region encountered by 
ti

the tracking line T before leaving from the surface a. Assuming the region 
j is convex, Eq (26) for Fii becomes: 

= (yiNkdk(f) 
k=1 

8iNk _ + Tzk + e , .kk 

0-k k=1 

and Eq (28) for Fi,,,a becomes: 

Fia a (f ) = 83aNK 8aNK+1CK (774) 

= (53aNK 8aNx+1 1  e—TicK

(54) 

(55) 

So, Eq (52) defines the reduced collision probabilities from the region j to 
itself (called the reduced self-collision probability) and Eq (53) defines the 
leakage probabilities from the region ja to the surface a. 

In the multigroup MCI solver, we assume that the source is composed of 
a fission source SI. and a scattering term. For a specific outer iteration, the 

J3 
source term after the n-th inner iteration is given by: 

Q7 
E E m—g' ,n cig 

.9,3 3 
+ 

fi 
g'=1 
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We use the superscript index n + 2 to denote the quantities obtained from 
the characteristics sweep of the source (4' n and by n + 1 for the quanti-
ties obtained after applying the SCR technique. By substituting Eq (56) in 
Eq (48), we obtain the rebalancing system for the region Vi: 

G 
( 

9g 
8 , ,9. .EPTY) (pg.',n+1 = 

3 3 3 ,7 3 3,1n 11j 3 ,-.'fi 

g'=1 

(57) 

The above SCR system is solved by an iterative method for all the regions 
one after another. Finally, the outward currents are updated by Eq (49) 
using the updated source Qr +1. 

5 Track Merging Technique 

In the process of generating all the tracking lines for a large domain, some 
neighboring lines often cross the same regions in exactly the same order as 
shown in (a) of Fig 1 and the corresponding segments can have very similar 
lengths. The finer the tracking mesh, the more this situation will occur. We 
can therefore suspect that these kinds of neighboring lines having identical 
nuclear properties may be merged together in order to save computing time. 
The resulting line takes the averaged segments lengths and additional weights 
of the original lines as its properties. It is clear that, if the original lines are 
normalized, the merged lines are also normalized and verify the equality of 
Eq (7). In Fig 1, (b) shows the merged lines set of (a). We will now prove that 
the approximation of TMT is of second order with respect to the tracking 
length variation. 

Assuming the lengths of two neighboring segments are L' = L + e and 
L" = L — e respectively and the merging segment length is therefore L. The 
inward fluxes on these three segments are supposed to be identical. From 
(11), the outward fluxes on them are consequently: 

Oout = Oine—cr(L±E) +1 (1 — e—cr(L±E)) (58) 

' ut = Oine—
u(L—e) +1 (1 e-u(L-e)) (59) 

k 

tout = 
Oine—crL 

q
(1 — e —L) (60) 
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Figure 1: Track merging technique. 

and the integrated angular fluxes are: 

o-LV = Oin (1 — e- cr(L±E)) + 1  (a(L + e) — 1 + e- cr(L±E)) (61) 
o-

o-L"cir = din (1 — e- cr(L-E)) + 1  (a(L — e) — 1 + e- 7̀(L- E)) (62) 
o-

o-LO = Oin (1 — e- crL) + 1  (aL — 1 + e- crL) (63) 
o-

Assuming that: 

I , q \ t _k  
MinMn, —) > MI > 0, MaXMn, 2 ) M2 U U 

and then, we can get: 

cb' + cb" — 20out out out 
2 0out 

coin — !) (e—cr(L±e) + e—a(L—e) 2e—crL)

(64) 

=   (65) 
210ine- aL + ! (1 — e- crL )1 

M2

1 
(e-"+ e"— 2) (66) 

— 2M 

= 0(e2) (67) 
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and then, we can get: 

I 
¢~ut + ¢~ut - 2</>out I = I ( </>in - ; ) ( e-a(L+c) + e-a(L-c) - 2e-aL) I 

2</>out 2 l</>ine-aL +; (1 - e-aL)I 

< M2 (e-ac + eac - 2) 
- 2M1 

= O(c2) 
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and similarly 

L'O' L"0" — 2L0 

2L0 

(0in — !) (e —a(L±E) e —cr(L—E) — 

210i„(1 — e- crL) !(o-L — 1 + e- cr)1 (68) 

M2 (Cc' e" — 2) (69) 
2M1aL 

= 0(e2) (70) 

The TMT method will thus combine two or more neighboring tracking 
lines having this kind of similarity, and the density of the resulting track will 
be modified proportionally according to the original one. We will now show 
the effectiveness of this technique that preserves the solution accuracy. 

6 Numerical Results 

Our tests are based on the 3D Gentilly-2 adjuster supercell calculation. As 
shown in Fig 2, there are two horizontal fuel bundles and one vertical adjuster 
with a symmetry factor 4. The Transport equation is solved by the B1 critical 
buckling search. The resulting fluxes are then Homogenized and the nuclear 
properties are condensed to 2 energy groups keeping the small up-scattering 
effect from the thermal to the fast group. An EQ4 angular quadrature is used 
for all the calculations. The transport equation is resolved many times with 
different densities and different mesh sizes. As shown in Fig 2, we refer N = 1 
as normal mesh and N = 2 as fine mesh. The normal mesh has 46 regions 
and 35 surfaces. The fine mesh has 308 regions and 127 surfaces. For this 
paper, the tracking line density for the fine mesh is fixed at 25 lines/cm2. It 
is the minimum for which every region is covered. The classic CP method of 
DRAGON is used to compare results. 

First of all, we will show the performance of SCR used with the one 
parameter acceleration method. In the Fig 3, the inner iteration accuracy is 
drawn for the MCI in both the cases with and without the SCR technique. 
The one parameter acceleration is always used. The inner iterations are 
ordered from the first outer iteration to the last. Although the one parameter 
acceleration is very good for the CP method, it is clearly shown that it is 
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Y 
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Figure 2: Adjuster supercell of Gentilly-2. 

not good enough for the 3D characteristics solver MCI. The application of 
the SCR technique has substantially accelerated the characteristics solver 
resolution scheme. 

We have examined the depletion calculations with density of 4 lines/cm2
for eight time steps. The normal mesh is used for our depletion calculations. 
The tracking lines are merged and SCR technique is also applied for the 
MCI solver. The tabulated exponentials are used for the resolution of the 
problem. We sketch the B2 variations of both DRAGON and MCI in Fig 4. 
We can see that the results are almost identical for these two methods in the 
depletion calculations. 

We have examined the AE calculations for the adjuster supercell. The 
tracking lines densities used for the normal mesh are 1.5, 2.5 and 4.0 lines/cm2
and the density used for the fine mesh is 25 lines/cm2 because each region 
must be crossed by some lines. The AE results of the solver MCI, for which 
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Figure 3: Convergence of the MCI solver with and without SCR technique. 
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Incremental 

cross-section 

Densities (lines/cm') 

1.5 2.5 4.0 25.0 

AEI- 7.1123E-04 7.1126E-4 7.1281E-4 7.0435E-4 

AEai 1.3313E-05 1.3309E-5 1.3375E-5 1.3400E-5 

AE.91-V- 6.2978E-04 6.3012E-4 6.3069E-4 6.2189E-4 

AE.91-;-2 1.6773E-07 1.6758E-7 1.6888E-7 1.6131E-7 

DEt 3.3516E-04 3.3447E-4 3.3724E-4 3.3107E-4 
Av a 2.6757E-04 2.6677E-4 2.6967E-4 2.6583E-4 

AE.92V- 6.8128E-05 6.7828E-5 6.8737E-5 6.9062E-5 

AE.92;-2 6.7385E-05 6.7512E-5 6.7407E-5 6.5095E-5 

Table 1: Adjuster AE values for BCAINT. 

the SCR, TMT and tabulated exponentials are all used, are presented in 
Table 1. We can see that the mesh and tracking line density normally used 
does not lead to a converged result. 

To show the accuracy of different approaches, the MCI results are com-
pared to the corresponding DRAGON results where the classic CP method 
is used, no lines are merged and exponentials are computed exactly. Several 
relative differences, defined by: 

AENICI - AEDRAGON 
X 100. (71) 

AEDRAGON 

are shown in Table 2. The options used by MCI solver are the following: 

• Column A: merged lines, tabulated exponentials; 

• Column B: merged lines, exact exponentials; 

• Column C: original lines, tabulated exponentials; 

• Column D: original lines, exact exponentials; 

Using all the acceleration techniques, the MCI solver is now very com-
petitive in speed with the classic methods of DRAGON. For problems hav-
ing many regions, the MCI is faster. The CPU times shown in Table 3 
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Density A B C D 

1.5 

0.0338a 
0.12791' 
0.0222' 

-0.0209d
0.0973e 

-0.5608f 

0.0338 
0.1354 
0.0238 
0.0358 
0.0973 

-0.3010 

0.0042 
0.0677 
0.0000 
0.0358 
0.0374 
0.0162 

0.0042 
0.0677 

-0.0016 
0.0089 
0.0262 

-0.1313 

2.5 

0.0619 
0.1354 
0.0524 
0.0628 
0.1238 

-0.2261 

0.0576 
0.1580 
0.0444 
0.0628 
0.1238 

-0.2113 

0.0239 
0.0752 
0.0191 
0.0539 
0.0375 
0.0857 

0.0239 
0.0752 
0.0191 
0.0539 
0.0375 
0.0931 

4.0 

0.0463 
0.1573 
0.0365 
0.0089 
0.1299 

-0.4534 

0.0463 
0.1647 
0.0349 
0.0178 
0.1299 

-0.4386 

0.0042 
0.0524 
0.0048 
0.0000 
0.0149 

-0.0162 

0.0084 
0.0524 
0.0048 
0.0089 
0.0149 
0.0281 

25.0 

0.0043 
0.0971 

-0.0064 
-0.0815 
0.1130 

-0.8498 

0.0043 
0.0971 

-0.0113 
-0.1177 
0.1130 

-1.0203 

0.0085 
0.0822 

-0.0016 
0.0181 
0.0942 

-0.3092 

0.0000 
0.0747 

-0.0129 
-0.0634 
0.0866 

-0.6655 

Table 2: Relative difference between MCI and DRAGON (in %). 

'Relative difference for AE1
bRelative difference for AE1 
'Relative difference for AE18-6-1-
dRelative difference for AE2
'Relative difference for .6.E, 
fRelative difference for DEL-2
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Density A B 

0.0338a 0.0338 
0.1279b 0.1354 

1.5 0.0222c 0.0238 
-0.0209d 0.0358 
o.0973e 0.0973 

-0.56081 -0.3010 

0.0619 0.0576 
0.1354 0.1580 

2.5 0.0524 0.0444 
0.0628 0.0628 
0.1238 0.1238 

-0.2261 -0.2113 

0.0463 0.0463 
0.1573 0.1647 

4.0 0.0365 0.0349 
0.0089 0.0178 
0.1299 0.1299 

-0.4534 -0.4386 

0.0043 0.0043 
0.0971 0.0971 

25.0 -0.0064 -0.0113 
-0.0815 -0.1177 
0.1130 0.1130 

-0.8498 -1.0203 

C D 

0.0042 0.0042 
0.0677 0.0677 
0.0000 -0.0016 
0.0358 0.0089 
0.0374 0.0262 
0.0162 -0.1313 

0.0239 0.0239 
0.0752 0.0752 
0.0191 0.0191 
0.0539 0.0539 
0.0375 0.0375 
0.0857 0.0931 

0.0042 0.0084 
0.0524 0.0524 
0.0048 0.0048 
0.0000 0.0089 
0.0149 0.0149 

-0.0162 0.0281 

0.0085 0.0000 
0.0822 0.0747 

-0.0016 -0.0129 
0.0181 -0.0634 
0.0942 0.0866 

-0.3092 -0.6655 

Table 2: Relative difference between MCI and DRAGON (in%). 

aRelative difference for D.~1 

bRelative difference for D.~! 
CRelative difference for D.~!o1 

dRelative difference for D.~2 

eRelative difference for D.~~ 
fRelative difference for D.~;0 2 
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Density Nb. of lines CPU time (sec.) 

(lines/cm') (before) (after) DRAGON MCI 

1.5 41441 21014 299 757 
2.5 68391 29447 449 1042 
4.0 109751 39980 667 1470 
25.0 693939 312826 41032 33142 

Table 3: CPU time and number of lines used by MCI and DRAGON. 

are obtained on a Pentium-166 with 64 MegaBytes physical memory and 
128 MegaBytes virtual memory. The operating system is Linux. It is inter-
esting to note that, for the fine mesh case, DRAGON has used almost all of 
the physical and virtual memory but the MCI solver has used only a small 
amount of the physical memory. 

7 Conclusion and perspective 

The development of the TMT method was shown to be very valuable in 
decreasing the CPU times required to obtain accurate characteristics solu-
tions. In the near future, the TMT method could serve as the basis for an 
automatic tracking procedure that will scan large 3D domains to produce 
a minimal tracking file containing much of the geometric data. One of the 
main benefit of this TMT process is that it would not depend on nuclear 
properties: the tracking file for various reactivity mechanisms (even contain-
ing small detailled regions) could thus be pre-processed by the user to an 
imposed degree of accuracy. 
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