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ABSTRACT 

This paper is devoted to a mathematical and numerical study of a six equation two-fluid model. We will prove that 
the model is strictly hyperbolic due to the inclusion of the virtual mass force term in the phasic momentum 
equations. The two-fluid model is naturally written under a nonconservative form. To solve the nonlinear 
Riemann problem for this nonconservative hyperbolic system, a generalized Roe's approximate Riemann solver, 
is used, based on a linearization of the nonconservative terms. A Godunov type numerical scheme is built using 
this approximate Riemann solver. 

0. Introduction 

The model considered here, is a first order equal pressure two-fluid model. Except the virtual mass force term, 
which contains partial derivatives, the other terms of mass and momentum transfer between phases are assumed 
to be absent. They will appear as so- tern, and will be added to the numerical scheme. The resulting model is 
a nonconservative hyperbolic one. 

In this paper, we present a numerical method based upon an approximate Riemann solver. Such numerical 
schemes have been widely used for hyperbolic systems of conservation laws. These schemes were originally 
developed for Gas dynamics calculations, and have been extended to couservative two-phase flow model l .  The 
purpose of this paper is to extend this Riemam solver approach to a nonconservative hyperbolic two-fluid model. 

1. -0-Phase Flow Model 

1.1 Equations 

We consider the first order differential equations of mass, momentum and energy conservation af the two-fluid 
model which might describe twocomponent two-phase flow in a straight pipe. 

Phasic mass balance 

at ( a k ~ k )  + ax (%pkuk) = O 

Phasic momentum balance 



with 

and 

Here the subscript kt1 refers to the liquid phase and k=v to the vapor phase; p,,u,, h, andor, are the mass 
density, the velocity, the enthalpy and the void fraction of the k-phase. P is the pressure assumed to be equal in the 
two phases and p is the mixture density given by 

To close the system the liquid phase is assumed to be incompressible with constant mass density p, while the 
vapor mass density is given by the following state equation : 

The results, however, can be generalized to a compressible liquid phase. 

We have chosen the following fonnulation for the virtual mass force term M,, at the right hand side of 0.2) and 
(1.3) : 

where c,, is the coefficient of virtual mass. Such formulation is used in the RELAPS code2, and is derived from 
the following expression suggested by Drew et al. 

M,, = -aVp1Cvm {at (uv - u,) + uvax (uv - u,) + (u, - u,) ( (h-  2) axu, + (1 - 1 )  a,u,) I 

where h is a void fraction dependent parameter. For many cases of interest, tbe inclusion or neglect of virtual 
mass force in the phasic momentum equations does not appreciably change the momentum results. However, the 
inclusion of this term with its temporal and spatial derivative tenns changes the hyperbolicity of the system. In 
general 4, the computation efficiency of the numerical scheme is improved. 

The virtual mass force tern that we have chosen, is not the only possible one. Anotha formulation will give 
similar results. The value of the virtual mass coefficient c,, will be &hed so as to have a hyperbolic system (see 
theorem 1.1). 

System (I.l)-(1.3) is not written in a conservative form. We introduce the mixture momentum pu , and the 
mixture total energy pE , given by 

1 2  P with E, = e + - u and e, = h, - - . These mixture quantities satisfy the following conservation equations 
2 ,  Pk 

atpu +ax (avpvut + %p,uf) + axp = o 
+ ax ( a V ~ V ~ v H v  + qplulHI) = 0 

The nonconservative terms in (1.2)-(1.3) arise from the splitting of this latter equations into two separate phase 
momentum and energy equations. 

lnuoducing the mixture quantities, p ,pu ,pE, and the concentration variable c defined by 



we can write, for smooth solutions, system (I. 1)-(1.3) in the following nonconsemative form 

M6 ( u )  atu + A, ( u )  a , ~  = o 
with 

is a parameter depending on the virtual mass coefficient and u' is a velocity defined by where 6 = -c,, 
P1 - 

u = avuv+a,ul 

The pressure derivatives pi are given by 

In the sequel, we will use the following systems of variables, depending on the computation to be performed 



We can shift from one system of variables to another through a C' diffeomorphism. 

Neglecting in the system (1.6) the terms arising from the virtual mass force leads to the condensed form: 

a , ~  + A,, (u) a , ~  = o (1.8) 

with A, (u)  = Ag , ,, (u) . This system is still non conservative due, for instance, to the term ( 1 - a) a,p in the 
liquid phase momentum equation. However, we prove the proposition 5: 

Proposition 1.1. Ler R be a set of physical states dejined by 

a = { U  (P>o) ,  ( C E  [o , I I ) )  

Let u be a continuous solution of system (1.1)-(1.3) and v be the vector valuedfincrion defined by (1.7). The 
function v is a solution of the following conservative system : 

with thejluxfunction defined by 

Proposition 1.1 shows that the systems (I.8) and (1.9) are equivalent for smootb solutions. 

1.2 Hyperbolicity of the System 

In order to study rhe hyperbolicity of the system (L6) we an looking for tbe eigenvaiues of this system. To 
determine these eigenvalues we must find the six roots of a polynomiai of degree six. We prefer to assume the 
relative velocity between the two phases much lower than the speed of sound of the tw+phase mixture c,. ?his is 
the case in many physically interesting configurations, for example for steam and water. Then, we introduce the 
following small parameter 

and we use a perturbation method around 6 = 0 in order to know the behavior of the eigenvalues 
Ai(u), i = 1,6. 

Theorem 1.1 Ler c!,,, be defined by : 

c;, = ( 4 c ( l  - c ) ) l n  

We can find a positive number to so thar for any u that lies in the set R* defined by 



all the eigenvalues of the *ern (1.6) are ma1 and distinct. 

For the proof of this theorem we refer the reader to reference 5. Theorem (1.1) shows that the inclusion of virtual 
mass force term, with c,, 2 1, makes the model well-posed. The computations have been done using a constant 
virtual mass coefficient equal to 2.0 . 

2. Numerical Method 

2.1 A Weak Formulation of Roe's Approximate Riemann Solver 

To solve the nonlinear Riemann problem for hyperbolic systems of conservation laws 

Roe introduces a local linearization 

atu + A (u,, u,) axu = o 
where A ( u ,  u,) is some average Jacobian matrix, known as a Roe averaged matrix, constructed to have the 
cmcial property 

Such a marrix was first constructed by Roe for Euler equations with perfect gases6, and then several extensions to 
real gases have been proposed (see reference 7 and the references therein). 

This method does not apply to the nonconservative hyperbolic system (1.61, since the maaix A, (a)  is not the 
derivative of a flux function f, (u) . To overcome this difficulty, we will use a weak formulation of Roe's 
approximate Riemann solver introduced in reference 7. 'Ibis fornulation is based on the &fintion of 
nonconservative products proposed by Dal Maso8. Using this definitiuh; the authors deduce the following 
generalized Rankine-Hugoniot condition ': 

aa J': ( - a ~ ,  + A, (a (s,uL3uR) (sfiL,uR) L = o 

where (s,uL,uR) is a Lipshitz continuous path connecting uL and u,. 

As these jump conditions depend on the path a ,  it is necessary to add some information to the first order system 
(1.6). Here, we consider approximate solutions to the Riemann problem for the system (I.6) which are exact 
solutions to the approximate linear problem : 

where A, (uL, uR) and M, ( u ,  u,) are constant manices depending on the data (uL, u,) , on the path and 
satisfying the following properties : 

aa 
M, (up UR) * (UR - UL) =  AM, ( 0  (s,uL,uR) (s.uL,uR) d~ (11.7) 

which shows that shocks of the linear system satisfy the generalized Rankine Hugoniot condition (11.4). 



2 2  Conservative System Case 

We remark that for a conservative system, the mauix Ms is equal to the identity and As is the jacobian matrix of 
a flux function f6 (u) . Then, the right hand side of (11.6) is independent of the path 9 : 

Thus, (II.6) coincides exactly with Roe's condition (II.3). A shock wave solution of the linearized system satisfies 
the Rankine Hugoniot condition for the nonlinear conservative system (II.1). and is independent on 4. In this 
case, the path 4 is only useful to linearize the Jacobian maaix A6 (u) to obtain A6 (up u,) . 
To construct such matrix we follow the method introduced in reference 7. The main feature is the choice of the 
canonical path for a parameter vector w : 

where yo is a smooth function such that yo (w,) = u,, yo (w,) = u, and Go ( w )  = awo/aw is a regular 
matrix for every state w. 

Using this path, we define Roe's matrix by ': 

As (uLt uR) @ = C (uL9 UR) @B (uL, uR) i1 (Kg) 

with 

The choice of the canonical path is motivated by the results obtained for the Euler equations (see reference 7 for 
more details on the effect of the path upon averaging). 

2.3 Nonconservative System Case . . 

To construct an approximate Riemann solver for hyperbolic nonumsexvative systems, we can use the above 
method since the flux function f6 (u) does not appear explicitly in (U.9). However, for such systems, the choice 
of the path 9 will be important Besides the linearization of tbe matrix A6 (u) , both the exact solution and the 
approximate solver strongly dependent to the path 9. 

We propose to separate the path contributiom on the two above problems : 
- the defintion of weak solutions which need a path with a physical meaning. 
- the linearization of the nonlinear matrix which does not need a physical path. 

In the next section we present a strategy for the construction of an approxh.uk Riemann solver for a 
nonconservative hyperbolic system. Fit, we choose an average for the nontmwwative terms so as to get a 
conservative system. This step amounts to the choice of a physical path for the nonconservative products. Then, 
we construct an approximate Riemann solver for the resulting conservative system as described in the above 
section. 

3. Application to the Two-Fluid Model 

In this section, using the above weak formulation, we build a Roe's approximate Riemann solver for the two-fluid 
model (I. 1)-(1.3). Fmt, we construct the Roe-averaged matrix for the basic system 0.8) which does not include 
the virtual mass force term. Then, we will extend the method for the complete system. 



3.1 Two-Fluid Model without V i a l  Mass Force Term 

Proposition 11.1 Let 6, = I - ii be defincd by 

Let u be a weak solution of the conservative system 

with the followingj7u function 

The vector valued function v = cp (u) given by (1.7) is a weak solution (smooth or shock solution) of the 
conservative system (I. 10) 

For the proof of this proposition see reference 7. System (IlI.2) is a conservative one. Thus, the path cP will have 
an effect only upon the linearization of the nonlinear Jacobian matrix 

ah (u, 6)  
A(u,E) = 

au - 
We apply the method presented in the above section with the parameter vector chosen as follows 

and vo ( W) given by the following expression 

Straightforward computations yield 



and 

where denotes the arithmetic mean of wi and iWi is an average of the pressure derivative pwi given by 

Finally, using Eq. (II.9), we find the Roe-averaged matrix for the system without --mass 

where pi is an approximation of the pressure derivative aplaui given by 

- 1 -  
Pi = z , P r i  

and bk, Hk are the Roe-averaged velocity and enthalpy : 



3 2  Two-Fluid Model with Virtual Mass Force Term 

We follow a similar method to construct a Roe averaged matrix for the complete system (1.6). We still use the 
canonical path for the parameter vector w, defined by (III.41, to linearize the matrices A6 (u) and M6 (u) . Then, 
a routine calculation shows that the Roe-averaged matrix is given as a sum of two averaged matrices 

where the first matrix is the Roe-averaged matrix for the system without virtual mass term and the second is the 
linearized matrix corresponding to the virtual mass term. 

4. Numerical Results 

In this section we extend Roe's numerical scheme, for the calculation of one-dimensional two-phase flow based 
on the two-fluid model. The resulting first-order numerical scheme may be written : 

with 

Ff (uf-,,uf) = A; ( ~ f - , , n 3 ~ ( u f - u f - , )  

The matrices A; are the positive and the negative part of the Roe-averaged matrix given by 

where hi-,, and R,.,, are the matrices containing, respectively, the eigenvalues and eigenvectors of the Roe- 
averaged matrix. 

Problem 1 : Shock-tube problem 

This problem consists in a Riemann problem for the two-fluid model where the left and right states are given by 

State uL : p, = 25MPa a, = 0.25 uL = 0.m" urL = 0.m-'  

State u, : p, = lOMPa a, = 0.1 UR = 0.m-I UrR = 0 . m ~ "  

The vapor phase is assumed to be an ideal isentropic gas. The computations have been done with 300 nodes and 
using a virtual mass coefficient equal to 2. and 50. Fig. 1 and Fig.2. give some flow characteristics in each case. 
The solution is composed by seven constant states separated by rarefaction waves or shock waves. The 
propagation velocities of the second and third waves being close to each other for small values of the virtual mass 
coefficient, these waves are not well separated in 1. 



distance (m) 

Fig. 1. Shock-tube problem with c,,, = 2. 



Fig. 2. Shock-tube problem with c, = 50. 
-- - 



Problem 2 : Water faucet problem 

This test, proposed by ~ansornl' consists in a vertical water jet, contained within a cylindrical channel, that is 
accelerated under the action of gravity. At the initial state, the pipe is 6lled with a uniform column of water 
surrounded by stagnant vapor, such that the void &action is 0.2 and the column has a uniform velocity of 10mIs 
and a uniform pressure of 1 6  Pa. 

The boundary conditions are specified velocities of 1 M s  for the liquid and Om/s for the vapor at the inlet, and 
constant pressure at the outlet. The water faucet problem can be solved analytically by making some further 
idealizations. This analytical solution was used as a code test in Reference 10. 

As illustrated on Figure 3. , a void wave develops and is propagated at liquid velocity. Once the void wave exits 
the pipe, a steady void profile is established The calculation was carried out until a steady-state is reached, with 
100 nodes and a constant CFL number equals to 0.9. Figure 4. shows the vapor void fraction profile at various 
time. These results clearly demonstrate the ability of the numerical scheme to capme discontinuities. 

In order to test the convergence and the stability character of the scheme, computations have been made using a 
discretization with 50 and 200 nodes, but constant CFL numbers equal to 0.9. The Figure 5 gives the void fraction 
profile for the various discretization. An interesting feature of the results shown m Figure 5 is that there is no 
oscillations at the discontinuity of the void fraction. 

Rg. 3. Schematic of the water faucet problem 



Fig. 4. Void fraction profile for the water fawcet problean 
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Fig. 5. Void &action profile for the water fawcet problem (continued) 

-- - - -  -- 
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