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ABSTRACT

This paper is devoted to a mathematical and numerical study of a six equation two-fluid model. We will prove that
the model is strictly hyperbolic due to the inclusion of the virtual mass force term in the phasic momentum
equations. The two-fluid model is naturally written under a nonconservative form. To solve the nonlinear
Riemann problem for this nonconservative hyperbolic system, a generalized Roe’s approximate Riemann solver,
is used, based on a linearization of the nonconservative terms. A Godunov type numerical scheme is built, using

this approximate Riemann solver.

0. Introduction

The model considered here, is a first order equal pressure two-fluid model. Except the virtual mass force term,
which contains partial derivatives, the other terms of mass and momentum transfer between phases are assumed
to be absent. They will appear as source terms, and will be added to the numerical scheme. The resulting model is

a nonconservative hyperbolic one.

In this paper, we present a numerical method based upon an approximate Riemann solver. Such numerical
schemes have been widely used for hyperbolic systems of conservation laws. These schemes were originally
developed for Gas dynamics calculations, and have been extended to conservative two-phase flow model !. The
purpose of this paper is to extend this Riemann solver approach to a nonconservative hyperbolic two-fluid model.

1. Two-Phase Flow Model

1.1 Equations

We consider the first order differential equations of mass, momentum and energy conservation of the two-fluid
model which might describe two-component two-phase flow in a straight pipe.

Phasic mass balance
9, (o) +9, (op,u) =0 .D
Phasic momentum balance
3, (0P ) +9, (P up) +0,0,p = MY (12)
Phasic energy balance




3, (P Hy) — 9P+, (P, 1 H,) = Miqu, 3)

with

H, = h + %’2‘ (I4)
and

a +a =1 (1.5)

Here the subscript k=l refers to the liquid phase and k=v to the vapor phase; p,,u,, h, ando, are the mass
density, the velocity, the enthalpy and the void fraction of the k-phase. P is the pressure assumed to be equal in the
two phases and p is the mixture density given by

p = pvav + plal
To close the system the liquid phase is assumed to be incompressible with constant mass density p, while the
vapor mass density is given by the following state equation :

pv = pv (p’ hv)
The results, however, can be generalized to a compressible liquid phase.
We have chosen the following formulation for the virtual mass force term M, at the right hand side of (I.2) and
(1.3):

M, = ~0,0,c,, (9, (u,~u) +udu,-udu)
where c,, is the coefficient of virtual mass. Such formulation is used in the RELAPS code 2, and is derived from
the following expression suggested by Drew et al. 3 -
M, = -0.p,C,, {3, (u,—u) +u,0_(u,-u)+ (u,~u) ((A-2)d.u,+ (1-2)d.u) }

where A is a void fraction dependent parameter. For many cases of interest, the inclusion or neglect of virtual
mass force in the phasic momentum equations does not appreciably change the momentum results. However, the

inclusion of this term with its temporal and spatial derivative terms changes the hyperbolicity of the system. In
general 4, the computation efficiency of the numerical scheme is improved.

The virtual mass force teon that we have chosen, is not the only possible one. Anotber formulation will give
similar results. The value of the virtual mass coefficient c,,, will be defined so as to have a hyperbolic system (see
theorem L1).

System (1.1)-(1.3) is not written in a conservative form. We introduce the mixture momenwm pu , and the
mixture total energy pE, given by

pu
pE

P, &,U, + P 04N,

pvavEV + pl‘:"lEl

]

withE, = e + %uz and e, = h, - Ep- These mixture quantities satisfy the following conservation equations
k

dpu+d (apul+apu) +3.p =0
dpE+d (apuH +apuH) =0

The nonconservative terms in (1.2)-(1.3) arise from the splitting of this latter equations into two separate phase
momentum and energy equations.

Introducihg the mixture quantities,p,pu,pE, and the concentration variable ¢ defined by



Qva
avpv + alpl

we can write, for smooth solutions, system (I.1)-(1.3) in the following nonconservative form

M;(u)du+A;(u)d.u =0 (1.6)
with
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where & = —F-,c‘,rn is a parameter depending on the virtual mass coefficient and u is a velocity defined by
1

U= au+ou

The pressure derivatives p, are given by

In the sequel, we will use the following systems of variables, depending on the computation to be performed



u= (pc,p(1~c),pup(l-c)u, pE p(1-c)Ey)

1.7
v=(pc,p(l1-c),pun,pE p(1-c)e) @D
We can shift from one system of variables to another through a C! diffeomorphism.
Neglecting in the system (1.6) the terms arising from the virtual mass force leads to the condensed form:
du+Ay(u)du =0 (1.8)

with Ay (u) = Aj_,(u). This system is still non conservative due, for instance, to the term (1 - ) d,p in the
liquid phase momentum equation. However, we prove the proposition 5,

Proposition L.1. Let Q be a set of physical states defined by
Q={u/ (p>0), (ce [0,1])}

Let u be a continuous solution of system (1.1)-(1.3) and v be the vector valued function defined by (1.7). The
function v is a solution of the following conservative system :

ay+0dgy(v) =0 (1.9)
with the flux function defined by

[ e,
p(I-c)y
pcuf+p(1-c)u,2+p
&) = “12 » N 1.10)

279,
pcu H, +p (I -c)uH,
p(l-c)ue

Proposition 1.1 shows that the systems (1.8) and (1.9) are equivalent for smooth solutions.

1.2 Hyperbolicity of the System

In order to study the hyperbolicity of the system (1.6) we are looking for the eigenvalues of this system. To
determine these eigenvalues we must find the six roots of a polynomial of degree six. We prefer to assume the
relative velocity between the two phases much lower than the speed of sound of the two-phase mixture ¢, . This is
the case in many physically interesting configurations, for example for steam and water. Then, we introduce the

following small parameter

_ (“v - ul)
T ¢

§

m

and we use a perturbation method around & = 0 in order to know the behavior of the eigenvalues
A (w), i=1,6.

Theorem 1.1 Let cem be defined by :
& = (dc(I-c))”

We can find a positive number & so that for any u that lies in the set Q" defined by



Q" = {ueQ: (182§, (cn2cm)}
all the eigenvalues of the system (1.6} are real and distinct.

For the proof of this theorem we refer the reader to reference 5. Theorem (I.1) shows that the inclusion of virtual
mass force term, with ¢, 2 1, makes the model well-posed. The computations have been done using a constant

virtual mass coefficient, equal to 2.0 .

2. Numerical Method
2.1 A Weak Formulation of Roe’s Approximate Riemann Seolver

To solve the nonlinear Riemann problem for hyperbolic systems of conservation laws
du+d f(u) =0

u(x,0) =u; (x<0), u(x,0) =ug(x>0) (L1

Roe 6 introduces a local linearization
du+A(u,ug)du =0 (I.2)
where A (ug, ug) is some average Jacobian matrix, known as a Roe averaged matrix, constructed to have the
crucial property
f(ug) —f(u) = A(ug, ug) (ug—u;p) ; L3
Such a matrix was first constructed by Roe for Euler equations with perfect gasess, and then several extensions to
real gases have been proposed (see reference 7 and the references therein).

This method does not apply to the nonconservative hyperbolic system (I.6), since the matrix Ag(u) is not the
derivative of a flux function fg(u). To overcome this difficulty, we will use a weak formulation of Roe’s
approximate Riemann solver introduced in reference 7. This formulation is based on the defintion of
nonconservative products proposed by Dal Maso®. Using this definition, the authors deduce the following

generalized Rankine-Hugoniot condition %
1 ad
J'o (-OM; + Ay (D (s.01,08))) 5o (Su1,05) ds = 0 (.4)

where @ (s,ug,ug) is a Lipshitz continuous path connec-ting u; and ug.

As these jump conditions depend on the path @, it is necessary to add some information to the first order system
(1.6). Here, we consider approximate solutions to the Riemann problem for the system (1.6) which are exact
solutions to the approximate linear problem :

M (ug, ug) du+ A (ug, ug) o, 0 =0

u(x,0) =y, (x<0), u(x,0) =ug(x>0) @-5)

where Ag (up, ug) o and M; (ug, ug) are constant matrices depending on the data (u(, ug), on the path ® and
satisfying the following properties :

od
Ag(ug, ug) o (Ug—up) = j;A5(d>(s,uL,uR))5s-(s,uL,uR)ds (IL6)

od
Mj (ug, ug) (U —Up) = J'(‘,Ms(@(s,uL,uR))-g(s,uL,uR) ds aL7)

which shows that shocks of the linear system satisfy the generalized Rankine Hugoniot condition (11.4).



2.2 Conservative System Case

We remark that for a conservative system, the matrix Mj is equal to the identity and A is the jacobian matrix of
a flux function fg (u) . Then, the right hand side of (IL.6) is independent of the path ® :

D
j oA (D (5,0.,85)) =5 (S:00ug) ds = £ (ug) £ (uy)

Thus, (I1.6) coincides exactly with Roe’s condition (I1.3). A shock wave solution of the linearized system satisfies
the Rankine Hugoniot condition for the nonlinear conservative system (II.1), and is independent on ®. In this
case, the path @ is only useful to linearize the Jacobian matrix Ag(u) to obtain Ag (up, ug) 4

To construct such matrix we follow the method introduced in reference 7. The main feature is the choice of the
canonical path for a parameter vector w .

® (s,up,up) = Yo (wp+s(wg~-wp)) (11.8)

where y, is a smooth function such that y (W) = up, ¥, (Wg) = ug and Gy (W) = 0dy,/dWw is a regular
matrix for every state w.

Using this path, we define Roe’s matrix by 7.

Aj(up, ug) o = C(ug, ug) oB (up, ug) 3 (I1.9)

with
B(uy,up) g = J';Go(wL+s(wR—wL))ds (.10)
C(uy, up) g = I;AGO(WL+s(wR-—wL))ds i (@.11)

The choice of the canonical path is motivated by the results obtained for the Euler equations (see reference 7 for
more details on the effect of the path upon averaging).

2.3 Nonconservative System Case

To construct an approximate Riemann solver for hyperbolic nonconservative systems, we can use the above
method since the flux function f5 (u) does not appear explicitly in (I.9). However, for such systems, the choice
of the path & will be important. Besides the linearization of the matrix Az (u), both the exact solution and the

approximate solver strongly dependent to the path ®.
We propose (o separate the path contributions on the two above problems :
- the defintion of weak solutions which need a path with a physical meaning.
- the linearization of the nonlinear matrix which does not need a physical path.
In the next section we present a strategy for the construction of an approximate Riemann solver for a
nonconservative hyperbolic system. First, we choose an average for the nonconservative terms so as to get a

conservative system. This step amounts to the choice of a physical path for the nonconservative products. Then,
we construct an approximate Riemann solver for the resulting conservative system as described in the above

section.

3. Application to the Two-Fluid Model

In this section, using the above weak fommlation, we build a Roe’s approximate Riemann solver for the two-fluid
model (1.1)-(1.3). First, we construct the Roe-averaged matrix for the basic system (1.8) which does not include
the virtual mass force term. Then, we will extend the method for the complete system.



3.1 Two-Fluid Model without Virtual Mass Force Term

Proposition I1.1 Ler &, = 1 — & be defined by

1 1 1 1
I-E'E(I—ak+1—a,_) . (LD

Let u be a weak solution of the conservative system
du+0dh(ud =0 (m.2)

with the following flux function

pcu,
pUU=-0u
peul+p(I-c)ul+p
pU-c)uf+(I-@)p
pcu H, +p (I -c)uH,
p(I-c)u (H-£)

P ]

h(u,@) = (Im.3)

The vector valued function v = ¢ (u) given by (1.7) is a weak solution (smooth or shock solution) of the
conservative system (1.10)

For the proof of this proposition see reference 7. System (II1.2) is a conservative one. Thus, the path @ will have
an effect only upon the linearization of the nonlinear Jacobian matrix

oh (u, @)

A(u,&) = —aT— .

We apply the method presented in the above section with the parameter vector chosen as follows

- -
r~ - JE‘E
W, Jp(l1-¢)
w= "= peu, (IL.4)
Wy 49(1‘0)“1
Ws JpcH,

A LJp (1-¢) HL

and y, (W) given by the following expression

, (W) = W Wy + WaW, {LS)
W,W,

W W+ Wy We—p

[ WaWe— (1-2)p

Straightforward computations yield



[ 2w, 0 0 0 0 0

o 2% 0 0 0 0

w, W, W W, 0 0

Blwtde=| o § o0 & 0 0

Ws—Pwi Ws~DPw2 DPw3 Pw4 Wl — Pws Wz = Pwsé

L~ alﬁwl Ws' alﬁvd - &15‘!3 - &|§w4 - a[ﬁWS i'-z - Elf’wg

and
[w, o W, 0 0 0
0 W, 0 W, 0 o0
I;wl §w2 2W3 + ﬁ\vJ 2\?74 + lsw4 i’ws 5w6
c (uL’ “R) - 3 a}f)wl alﬁwz &1ﬁw3 2W4 + &1§w4 alﬁws a11-’w6
0 0 W W w, W,
_ P ~ _p -
0 -w,~ 4] We— Wy— 0 W
I 4 P, 6 291 ‘ 4 J

where Wl denotes the arithmetic mean of w; and Pw; iS an average of the pressure derivative P.; given by

- d
wi = J’;ﬁ-‘%(w,ﬂ-s(wk—wx_))ds

Finally, using Eq. (11.9), we find the Roe-averaged matrix for the system without virtnal mass

[ o 0 1
0 0 0
- -2 - -2 - -
pP1—U P2-y ps+2u,
Ag(w) = ap ap; - o @ps
ﬁﬁl - l-lvilv 652 - ﬁlHl + (ﬁl - ﬁv) 5/P1 ﬁ§3 +H,
@, 0;p; &,0,p; = B,E; @, 0P,
-1 0 0
1 0 0
Pe+2(1y-0,) Ps Ps

2up+ 61154 A &,Ps

654+H]‘Hv 655"'6‘7 ﬁf’6+ﬁl—fi,

51‘-11}34 + él &151135 51‘-11136 +10y i

where p; is an approximation of the pressure derivative dp/du; given by

and U, Hy are the Roe-averaged velocity and enthalpy :

(111.6)

(1.7



[ORcRyR 4 [olclyl
= _ NPTC U+ NPTCU

u = (111.8)
JPReR + Jplek

. [ RGRYR | [ Lolyl

i = prC o+ yprc Hy (IIL.9)

R

3.2 Two-Fluid Model with Virtual Mass Force Term

We follow a similar method to construct a Roe averaged matrix for the complete system (1.6). We still use the
canonical path for the parameter vector w, defined by (II1.4), to linearize the matrices A; (u) and M (u) . Then,
a routine calculation shows that the Roe-averaged matrix is given as a sum of two averaged matrices

A (ug, ug) 5™ = Ay (ug, ug) o + 8A5 (uy, ug) 4 (I11.10)

where the first matrix is the Roe-averaged matrix for the system without virtual mass term and the second is the
linearized matrix corresponding to the virtual mass term.

4. Numerical Results

In this section we extend Roe’s numerical scheme, for the calculation of one-dimensional two-phase flow based
on the two-fluid model. The resulting first-order numerical scheme may be written :

i

ot = ul+ g (F* (uj_,, ) +F (u}uf,,))
with

F* (ui_,w) = A7 (uj_,, o) g (Wi-u;_,)
The matrices A§ are the positive and the negative part of the Roe-averaged matrix given by

A, FIA,
i-12 - .
A* (uj_,u) = Ry, (#) Ri'n
where A, and R, are the matrices containing, respectively, the eigenvalues and eigenvectors of the Roe-
averaged matrix.

Problem 1 : Shock-tube problem
This problem consists in a Riemann problem for the two-fluid model where the left and right states are given by

State u : p.=25MPa o =025 u, = O.ms™ u; = O0.ms™’

State ug : pr = I0MPa  a, =0.1 up = Oms™! ug = O.ms™’

The vapor phase is assumed to be an ideal isentropic gas. The computations have been done with 300 nodes and
using a virtual mass coefficient equal to 2. and 50. Fig. 1 and Fig.2. give some flow characteristics in each case.
The solution is composed by seven constant states separated by rarefaction waves or shock waves. The
propagation velocities of the second and third waves being close to each other for small values of the virtual mass
coefficient, these waves are not well separated in Figure 1.



void fraction

total energy (MJ /Kg)

0.25 —————/

020

0.15

0.10

T

0.05
0.0

2.0 40 6.0
distance (m)

8.0

10.0

1.37

136 1

135

1.34

1.33

1 1 L

1.32
0.0

2.0 40 6.0
distance (m)

Fig. 1. Shock-tube problem with Cyp = 2.
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Problem 2 ;: Water faucet problem

This test, proposed by Ransom!? consists in a vertical water jet, contained within a cylindrical channel, that is
accelerated under the action of gravity. At the initial state, the pipe is filled with a uniform column of water
surrounded by stagnant vapor, such that the void fraction is 0.2 and the column has a uniform velocity of 10m/s
and a uniform pressure of 10° Pa.

The boundary conditions are specified velocities of 10m/s for the liquid and Om/s for the vapor at the inlet, and
constant pressure at the outlet. The water faucet problem can be solved analytically by making some further
idealizations. This analytical solution was used as a code test in Reference 10.

As illustrated on Figure 3., a void wave develops and is propagated at liquid velocity. Once the void wave exits
the pipe, a steady void profile is established. The calculation was carried out until a steady-state is reached, with
100 nodes and a constant CFL number equals to 0.9. Figure 4. shows the vapor void fraction profile at various
time. These results clearly demonstrate the ability of the numerical scheme to capture discontinuities.

In order to test the convergence and the stability character of the scheme, computations have been made using a
discretization with 50 and 200 nodes, but constant CFL. numbers equal to 0.9. The Figure 5 gives the void fraction
profile for the various discretization. An interesting feature of the results shown in Figure 5 is that there is no
oscillations at the discontinuity of the void fraction.

v

h=12m

p=p? p=p°
B Liquide [_] vapeur

Fig. 3. Schematic of the water faucet problem
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